

1

The Rise of Deep Reinforcement Learning

and Applications in Stock Market

Research

	

2

Contents

1. Introduction ... 1

2. Reinforcement Learning ... 3

2.1 Key Concepts and Ideas of Reinforcement Learning 4

2.2 Mathematical Framework of Reinforcement Learning 6

2.3 Reinforcement learning algorithms ... 11

3. Deep Reinforcement Learning ... 20

3.1 The Rise of Deep Reinforcement Learning 20

3.2 Key Deep Reinforcement Learning Algorithms 21

3.3 Current Challenges and Research Directions 26

4. Recent Applications of DRL in Finance 28

5. Summary .. 30

Appendix ... 31

References ... 34

3

1

The Rise of Deep Reinforcement Learning

and Applications in Stock Market

Research

1. Introduction

Deep reinforcement learning has become a flourishing subfield of

machine learning in the past decade. Two remarkable and well-known

successful cases of using deep reinforcement learning to solve

sophisticated games, Atari 2600 and AlphaGo, substantially catalyze the

research interest in this direction globally. An important goal of machine

learning research is to create intelligent systems that are able to automate

complex decision making and achieve human-level control. Deep

reinforcement learning holds the promise to be an important component

of this system.

Reinforcement learning is an experience-driven autonomous learning

method. The essence of it is learning from interaction with the

environment. Broadly, reinforcement learning has its early roots in the

behaviorist psychology (trial-and-error learning) and optimal control (its

solutions using value functions and dynamic programming). These two

subfields provide the foundations for the modern reinforcement learning.

2

While reinforcement learning has made important progresses across

various domains, a bottleneck is lack of scalability. Specifically, to

successfully implement reinforcement learning for solving real-world

tasks, the learning agents confront a challenge of deriving efficient

representation of the environment (Mnih et al., 2015). In other words,

reinforcement learning per se lacks scalability and is inherently limited

to low-dimensional problems, a.k.a. “the curse of dimensionality”.

The advances in deep learning provide a powerful tool to tackle this

bottleneck confronted by reinforcement learning. Deep learning has

powerful function approximation and automatic feature learning

properties, which enables the reinforcement learning agent to effectively

handle the unstructured environment. Incorporating deep learning into

the reinforcement learning framework gives rise to the so-called deep

reinforcement learning. Combining deep representation learning with the

reinforcement learning framework makes it possible to learn complex

policies in high dimensional environments and solve such complex high-

dimensional problems end-to-end.

In this study, we aim to provide a brief overview of the core ideas and

algorithms in reinforcement learning and deep reinforcement learning,

3

and summarize recent applications of deep reinforcement learning in

stock market research.

The rest of this study is organized as follows. Section 2 introduces the

background, core concepts, mathematical set-up, and key algorithms

reinforcement learning. Based on this, section 3 discusses the rise of deep

reinforcement learning and surveys important and influential deep

reinforcement learning algorithms. In section 4, we briefly summarize

recent applications of deep reinforcement learning algorithms on stock

market research. Then, we highlight primary challenges confronting deep

reinforcement learning and discuss promising research directions going

forward. Then, we summarize in section 5.

2. Reinforcement Learning

The fundamental idea underlying reinforcement learning is learning by

interacting with the environment. This branch of machine learning

focuses on much more on goal-directed learning from interaction than

other forms of machine learning (Sutton and Barto, 2018). In this section,

we firstly discuss the core ideas and essential features of reinforcement

learning informally. Then we go on to formalize the problem and set up

the mathematical model of it based on the Markov Decision Processes.

4

2.1 Key Concepts and Ideas of Reinforcement Learning

Informally, reinforcement learning is “a computational approach to

understanding and automating goal-oriented learning and decision

making”(Sutton and Barto, 2018). It learns to map situations to actions

in order to maximize a reward signal. In doing so, the RL agent is not

told what actions to take under a given situation, but has to figure out the

most-rewarding actions by trying them out. The two most distinguishing

features of reinforcement learning are trial-and-error search and delayed

reward (Sutton and Barto, 2018).

The primary elements in a reinforcement learning system include: an

agent, an environment, a policy, a reward signal, and optionally a value

function and a model of the environment. At each time step, the agent

(partially) observes the state of the environment and then take an action

following a policy, which would change the state of the environment and

send a reward signal to the agent. The goal of the agent is to maximize

the total rewards. In particular, the policy plays a central role in the

reinforcement learning system. It specifies a rule that tells the agent what

action to take in a given state. We will formalize policies and the

environment dynamic in this section later.

5

Figure 1: Agent learn by interacting with the environment (Sutton and Barto, 2018)

A fundamental dilemma in reinforcement learning is the trade-off

between exploitation and exploration, which is not present in the

supervised learning and unsupervised learning. This challenge originates

from the trial-and-error search feature. On the one hand, the learner

should take actions that is known to yield high rewards by exploiting its

past experiences, on the other, the agent needs to explore what actions

lead to higher reward in order to maximize the total rewards over the life

time. In fact, one active research area is designing the exploration

strategies that can achieve a better balance between exploitation and

exploration.

Another feature of the reinforcement learning is goal-oriented, which

means the learning agent explicitly considers the whole problem while

interacting with an uncertain environment (Sutton and Barto, 2018).

6

2.2 Mathematical Framework of Reinforcement Learning

Markov Decision Processes (MDPs) is the standard mathematical

framework to formalize the single-agent sequential decision-making

problems. For the denotation, we follow OpenAI Spinning Up (OpenAI,

2018). The MDPs is a 5-element tuple <S, A, T, R, r>:

- A state space S (discrete or continuous).

- An action space A (discrete or continuous).

- Transition dynamics T (deterministic or stochastic).

- An immediate reward function R.

- A discount factor 𝛾 ∈ (0, 1).

The state can be viewed as all information about the uncertain

environment that is available to the agent. The transition dynamics satisfy

the Markov property, which means that the transitions only depend on

the most recent state and action and not the previous history. In other

words, only the current state and action affects the next state. The Markov

property depends on the assumption that the environment state is fully

observable to the agent, which may not be true in reality. A generalization

of MDP is the Partially Observable Markov Decision Processes

(POMDPs), which assumes the only part of the state is accessible to the

agent.

7

To date, much of the reinforcement learning theory literature focuses on

finite MDPs that has finite state, action, and reward sets.

Figure 2: The Markov Decision Processes (Levine, 2019)

In this mathematical setup, the policy 𝜋 is a function that maps the state

space to a distribution over the action space, which can be either

deterministic or stochastic. Starting from an initial state and following a

particular policy, the agent will generate a sequence of states and actions,

which is called a trajectory/rollout/episode, denoted by 𝜏. Typically, the

first state in the trajectory is randomly sampled from a start-state

distribution.

The reward signal is a function of the current state and action pair, and

optionally the next state. The central optimization problem in the

reinforcement learning system is therefore to select a policy to maximize

the expected accumulative rewards (instead of merely the immediate

reward) over the entire trajectory. From this sense, designing the reward

8

function is of critical importance, and this active line of research is

termed as reward shaping.

Value functions

The value of a state refers to the expected return the agent would receive

if the agent starts from that state and follow a particular policy thereafter.

Intuitively, it indicates how good a state is for the agent in terms of

expected return. While the reward signal specifies what is good at a time

step, the value function characterizes what is good over the long run. The

value function of a state s under a policy 𝜋 is formally defined as

.

A closely related term is the action-value function 𝑄!(𝑠, 𝑎), which refers

to the expected return if the agent starting from state s and taking an

action a and following a policy 𝜋 henceforth, denoted as

.
There are different ways to estimate the value function and action-value

function. For instance, we can use the Monte Carlo methods or a

parameterized function approximator to estimate the value function as

well as the action-value function from experience. The optimal policy in

a state will select the action that maximizes the expected return in that

9

state. The corresponding optimal value functions are defined formally as

follows:

.

One view in the reinforcement learning community is that value

functions are crucial for efficient search in the policy space (Sutton and

Barto, 2018), while another may prefer to search in the space of polices

directly without resorting to the value functions.

Bellman Equations

The value functions satisfy the self-consistency condition described by

the Bellman Equation, which expresses a recursive relationship between

the value of a state and the values of successor states. More specifically,

it specifies the value of a state equals the expected reward the agent can

get from that state plus the value of the expected next state. The Bellman

equations for both the value functions and optimal value functions are

As we will see, the Bellman equations provide a basis for many

10

approaches to approximate and learn the value functions. For finite

MDPs, there is a unique solution for the Bellman equations for the

optimal value functions. However, for real-world problems, we generally

do not solve the Bellman equations exactly, but settle for approximate

solutions. Once we have the optimal value functions, it is relatively easy

to derive the optimal policy from them.

Advantage functions

The idea of the advantage functions is akin to removing a baseline from

a signal. It provides information about how good an action compared to

the average. We formalize this idea by defining the advantage function

as

The advantage function is widely used in policy-based reinforcement

learning algorithms as we will discuss later.

In general, there are three classes of methods for solving the finite MDPs

problems: dynamic programming, Monte Carlo methods, and temporal-

difference learning. Each class has its strengths and weaknesses.

Fortunately, we can combine them to create solutions that can outperform

any one class alone.

11

Figure 3: Two dimensions of the space of reinforcement learning methods: the depth and

width of the updates (Sutton and Barto, 2018)

2.3 Reinforcement learning algorithms

The mainstream reinforcement learning algorithms can be roughly

divided into three classes: value-based methods, policy-based methods,

and hybrid methods that combined these two approaches. At the same

time, it is worthy to note that there are other important branching points

in the reinforcement learning algorithms, each characterizes the

algorithms from a different and important aspect. While the we organize

various algorithms following the first categorization criteria, we will

investigate the algorithms from a variety of branching points in order to

gain a comprehensive and deep understanding of them. To this end, we

12

firstly summarize these critical branching points before diving into the

ocean of reinforcement learning algorithms.

Model-based vs. Model-free

The distinguishing point is whether a model of the environment is

available to the agent.

For model-based reinforcement learning, the agent will learn a transition

model to simulate the environment, and therefore the agent can learn

without interacting with the environment directly. This is especially

useful when interacting with the environment is very costly in real-world

tasks. Then the learned environment models can be used for planning. By

contrast, for model-free RL, such knowledge of the environment

dynamics is not available. The agent learns though trial-and-error

explicitly. Of course, there is no free lunch. The upside of model-based

methods is higher sample efficiency, but the downside is that they suffer

from model bias.

On-policy vs. Off-policy

On-policy reinforcement learning algorithms conduct updates using

trajectories generated by the policy, whereas off-policy approaches can

make use of trajectories generated by other policies. On-policy methods

13

have lower sample efficiency than their off-policy counterparts as the

former cannot use old data or data from different polices. However, the

reliance on on-policy data makes the on-policy algorithms more stable

than off-policy methods.

Finite-horizon vs. Infinite-horizon

For Infinite-horizon reinforcement learning, the number of time steps in

the MDP goes to infinite. In this case, we need a discount factor when

calculating the expected rewards. Correspondingly, there are finite

number of time steps in the finite Finite-horizon reinforcement learning.

These two kinds of methods are appropriate to model different real-world

tasks in practice.

Finally, also note that while there are various reinforcement learning

algorithms, they can be framed into a three-step loop as shown below. In

the rest of this section, we will focus on investigating these steps when

analyzing important RL algorithms in the rest of this section.

14

Figure 4: The anatomy of reinforcement learning algorithms (Levine, 2019)

2.3.1 Value-based methods

Now we are ready to study the real meat of the study and we begin with

the value-based methods. This class are based on the value function or

action value function (a.k.a. “Q-function”) that we formulated in the

previous part. The agent takes an action based on the evaluation of the

value function. As noted earlier, once we have the optimal value function,

we can derive the optimal policy from it. If we have the optimal value

function 𝑉∗(𝑠) , we can derive the optimal policy by conducting a one-

step-ahead search and finding the action(s) that is greed with respect to

the value function. Alternatively, if the optimal action value function

𝑄∗(𝑠, 𝑎)	is available, we find the optimal policy simply by choosing the

action(s) that maximize 𝑄∗(𝑠, 𝑎) . From this perspective, efficiently

estimating the value function plays a central role for the value-based

methods.

15

Sarsa

We begin our study of value-based methods with the Sarsa algorithm. It

is uses on-policy temporal-difference learning method, combining the

ideas from Monte Carlo methods and dynamic programming, to learn the

action-value function (Sutton and Barto, 2018). At each time step, Sarsa

uses the episodes generated by the current policy to update the action-

value function as below

Sarsa continuously update the action value function in this way and

concurrently update the policy greedily with respect to the updated value

function.

Q-learning

Q-learning is an off-policy temporal difference learning algorithm. While

Q-learning still uses the current policy to choose state and action pairs to

visit, the learned Q function would directly approximate the optimal

action value function independent of the policy being followed (Sutton

and Barto, 2018). Formally, the update of the Q function is defined as

Learning this way enables earlier convergence compared to the on-policy

16

value-based Sarsa.

2.3.2 Policy-based methods

Policy Gradient

Unlike the value-based methods, the policy-based methods learn the

policy directly without resorting to the value functions. (In DRL, the

policy is parameterized as a deep neural network as we will see in section

3.) In contrast to the value-based methods, the policy search approaches

optimize the policy performance directly without consulting the value

function estimates, which give rise to several advantages. For example,

learning a parameterized policy can handle the continuous action space

naturally and also is a good way of inject prior knowledge about the

policy. However, there is no dominating algorithms so far and it is

important to understand the tradeoff between different classes of

reinforcement learning methods. In general, the policy search approach

trades off sample efficiency for higher stability.

The core idea underlying the policy gradient is using gradient ascent to

estimate the parameters of the policy by maximizing the expected

rewards. Formally, let 𝜋# be a stochastic policy parameterized by 𝜃,

and 𝐽(𝜋#) the expected return under this policy. Then the policy

17

gradient is ∇#(𝐽(𝜋#)). Given a learning rate of 𝛼,	we can use update the

policy using the standard gradient ascent (or other gradient ascent

algorithms)

The general form of the policy gradient is

with Φ$ be the sum of all rewards over the trajectory, the “reward-to-

go”, or other forms. It is called the policy gradient theorem. This crucial

result reduces the performance gradient to an expectation, which has as

a simple form and can be estimated by samples.

Vanilla Policy Gradient

We start with the Vanilla Policy Gradient (VPG), which is arguably the

simplest algorithm among the policy search class (Sutton et al, 2000).

For VPG, we formulate the policy gradient using the advantage function

introduced earlier. Mathematically, in the general form of the policy

gradient, we replace Φ$ with the advantage function for the current

policy 𝐴!!(𝑠$, 𝑎$) (Schulman et al, 2016). VPG is on-policy algorithm

as it conducts exploration by sampling actions based on the most recent

policy. This approach is susceptible to local optima.

18

Trust Region Policy Optimization

A problem with the VPG is that a large step size can be dangerous as it

may collapse the policy performance. The Trust Region Policy

Optimization (TRPO) addresses this challenge by limiting each policy

gradient update to prevent the updated policy deviates too much away

from the previous one (Schulman et al, 2015). Such deviation is

measured by the KL divergence between the current policy and the

updated policy. In this way, the on-policy TRPO is able to improve the

policy monotonically with non-trivial step sizes.

Proximal Policy Optimization (PPO)

The design of PPO shares the same motivation with the TRPO. But PPO

manages to attain comparable stability and reliability with TRPO in terms

of empirical performance, but only uses first-order optimization (instead

of second-order optimization as in TRPO) (Schlman et al., 2017). Hence,

PPO is easier to understand and simpler to implement than TRPO. To do

so, PPO uses a surrogate objective with clipped probability ratios to form

a lower bound of the policy performance. And then optimizing the policy

by alternating between sampling data from the policy and performing a

number of epochs of optimization on the sampled data.

19

2.3.3 Hybrid methods

Actor-Critic Methods

The hybrid methods combine the valued-based and policy-based

methods, which learn approximations to both the policy and value

functions. For the classic actor-critic method, the learned policy plays the

role of choosing action and hence is the actor, and the estimated value

function would criticize the action made by the actor and therefore is the

critic. In this way, we the actor-critic style methods are able to effectively

reduce variance and accelerate learning.

Deterministic Policy Gradient

The Deterministic Policy Gradient (DPG) is a model-free off-policy

actor-critic algorithm (Silver et al., 2014). Theoretically, the

deterministic policy gradient is shown to be the expected gradient of the

action-value function, and therefore it can be estimated more efficiently

than the stochastic policy gradient. In addition, the deterministic policy

is in fact a limiting case of the stochastic policy gradient with the policy

variance tends to zero, which implies that the policy gradient machinery

also applies to the deterministic policy gradients (Silver et al., 2014).

The DPG learns a Q-function and a policy concurrently, which are

20

updated to improve each other in an actor-critic style. Specifically, the

actor updates the policy in the direction of the off-policy deterministic

policy gradient (which is the gradient of the action-value function), and

the critic estimates the action-value function using Q-learning. The DPG

enjoys higher sample efficiency as they can reuse old data. As we will

see in the next section, Deep Deterministic Policy Gradient extends the

DPG to high-dimensional state-action space.

3. Deep Reinforcement Learning

3.1 The Rise of Deep Reinforcement Learning

The integration of reinforcement learning and deep learning is arguably

one of the most exciting and fruitful directions in the machine learning

field in recent years, which give rise to the flourishing deep

reinforcement learning.

In this subfield, we use deep neural networks to approximate a stochastic

policy. Common stochastic policies in include categorical policies and

diagonal Gaussian policies, which are typically used for discrete action

spaces and continuous action spaces separately. For training stochastic

polices, we need to first sample action from the policy and then compute

the log likelihoods of the sampled actions.

21

3.2 Key Deep Reinforcement Learning Algorithms

Figure 5: A non-exhaustive taxonomy of the RL algorithms (OpenAI, 2018)

3.2.1 Value-based Methods

DQN

The success and influence of the classic Deep Q-Network (DQN) (Mnih

et al., 2013; 2015) has secured its position in the machine learning history.

In fact, it substantially launched the deep reinforcement learning field.

DQN extends the Q-learning algorithm by using deep neural networks as

the Q-function approximator, which enables it to learn from high-

dimensional state spaces directly. In practice, two practical techniques

significantly improve the DQN performance: (1) experience replay (a.k.a.

replay buffer) (break the correlation between successive experience

samples); (2) target networks (provide consistent targets and reduce

22

variance). These two technical innovations enable the DQN to learn

value functions using deep neural networks in a stable and robust way.

However, while the DQN can handle discrete and low-dimensional

action spaces well, there is no straightforward way to extend it to

continuous action spaces which are common for many real-world cases

such as continuous control. The design of the DDPG is partly motivated

to address this constraint of DQN.

3.2.2 Hybrid Methods

Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) extends the DPG to

high-dimensional state-action space (Lillicrap et al., 2016). To do so, it

combines the insights from the DQN and DPG outlined in Section 2. The

DDPG is a model-free, off-policy, actor-critic algorithm that uses deep

function approximators to learn policies in high-dimensional and

continuous action spaces. In particular, the DDPG adopts the same

technical innovations replay buffer and target networks as in DQN.

Since it is not straightforward to extend DQN to continuous action space,

this motivates the DDPG to use the actor-critic method as in the DPG.

23

The critic, an action-value function approximator, is learned by

exploiting the Bellman equation using off-policy data. This is typically

done by minimizing a mean-squared Bellman error (MSBE) function,

which indicates how closely the current action-value approximator

comes to satisfying the Bellman equation. As it is challenging to compute

the maximum over actions in the target, the DDPG uses the target policy

network instead. The learning for the actor side is relatively easy. A

parameterized actor function is updated following the policy gradient,

using the expected gradient of the action-value function approximator we

learned. The pseudocodes can be found in Appendix 1.

However, a limitation of DDPG is that it typically requires a lot of

episodes to train. In addition, its brittleness and hyperparameter

sensitivity makes it challenging to implement in real-world tasks.

Twin Delayed DDPG

A common problem of DDPG is that the errors of the Q-function

approximator always lead to overestimation of the true Q-values. The

Twin Delayed DDPG (TD3) improves the DDPG algorithm by

introducing innovative mechanisms to address the problems in DDPG

(Fujimoto et al., 2018). First of all, TD3 uses clipped double-Q learning

24

to replace the critic in the actor-critic setting. A second technique is

delayed policy updates. In TD3, the policy network is updated at a lower

frequency than the value network. Finally, target policy smoothing

regularization is introduced to reduce the variance of the target. In

practice, it is done by adding random noise to the target policy. These

techniques together significantly improve the performance of TD3

compared to DDPG.

Soft Actor Critic

Beside TD3, another descent of DDPG is Soft Actor Critic (SAC)

(Haarnoja et al., 2018). In contrast to learning a deterministic policy as

in DDPG, SAC optimizes a stochastic policy in an off-policy way. It can

be implemented in discrete or continuous action spaces.

A key feature of SAC is entropy regularization. The policy is trained to

maximize the sum of the expected future return and entropy, which is

closely related to the fundamental exploration and exploration trade-off

of reinforcement learning. We briefly introduce the entropy-regularized

reinforcement learning. The core difference is that we alter the

reinforcement learning objective by augmenting the maximum reward

with a maximum entropy term, which improves the exploration and

25

robustness. The augmented objective is denoted as

In particular, 𝛼 is the entropy regularization coefficient that can be

either fixed or varying over the course of training. This hyperparameter

controls the tradeoff between exploration and exploitation, which should

be tuned according to the environment. It is easy to see that higher

entropy encourages more exploration. Based on this new objective, the

value functions in the maximum entropy reinforcement learning should

be altered accordingly.

For implementation, SAC also adopts the clipped double-Q learning

technique to improve the performance similar to TD3. Empirical results

show that SAC outperforms prior on-policy and off-policy reinforcement

learning algorithms in terms of sample efficiency and stability.

Asynchronous Advantage Actor Critic

Although the classic DQN addresses the fundamental stability problem

in deep reinforcement learning, it is computationally expensive. In

particular, while the experience replay buffer contributed to reduce non-

stationarity and decorrelates updates, the drawbacks are higher memory

and computation cost and updates using data generated from older

26

policies.

An alternative line of research exploits parallel computation to speed up

learning and improve on stability, which motivates the design of

Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016)

algorithm. The key underlying idea is to asynchronously execute

multiple agents in parallel on multiple instances of environment, which

can improve the robustness of both on-policy and off-policy deep

reinforcement learning performance. In particular, A3C combines

advantage updates with actor-critic framework and uses parallel actor

learners to update a shared model to stabilize the learning process. In this

way, A3C outperforms prior deep reinforcement learning algorithms and

becomes of the most popular starting point for subsequent works in this

field. A closely related algorithm is Advantage Actor Critic (A2C), in

which only one agent is used (Wang et al., 2017).

3.3 Current Challenges and Research Directions

We end our survey of the aforementioned mainstream deep

reinforcement learning algorithms with a brief discussion of current

challenges and some of the promising further research directions (this is

by no means exhaustive).

27

Meta Learning

The current machine learning research focuses on end-to-end learning,

which means to learn to solve a problem absolutely from scratch without

accessing any domain-specific knowledge. However, this type of

learning usually requires a lot of data to train and does not generalize

well to different but similar tasks. On the contrary, human beings can

learn to solve a problem from only a few examples and find it easy to

solve a similar task taking advantage of previously acquired skills.

Inspired by the way human beings learn, meta learning, a.k.a. learning to

learn, aims to not only speed up learning but also learn a range of skills

concurrently. For more details, we direct the readers to a comprehensive

survey of meta learning (Finn, 2018).

Imitation Learning and Inverse Reinforcement Learning

Imitation learning refers to learning from demonstrations, which is a

straightforward way to acquiring new skills. It is traditionally known as

behavior cloning. A downside of this approach is the difficulty to adapt

to new situations. There are ongoing studies on tackling this challenge.

Inverse reinforcement learning (IRL) aims to estimate an unknown

28

reward function from observed trajectories. IRL can be combined with

reinforcement learning to better learn from demonstrations. Theoretically,

it is shown that IRL can be reduced to measure matching (Ho and Ermon,

51). This motivates the design of generative adversarial imitation

learning (GAIL), which can directly extract a policy from data.

Multi-agent Reinforcement Learning

For many real-world scenarios, there are multiple agents acting in an

environment instead of a single one. In such case, the MDPs framework

is no longer adequate to model the problem. Instead, we can resort to the

stochastic game to formulate a set-up, which allows us to consider new

questions, such as communication among agents and how they should

cooperate. A current hot topic is on about integrating mutli-agent deep

reinforcement learninging with game theory (Heinrich and Silver, 2016).

4. Recent Applications of DRL in Finance

In this section, we investigate application of deep reinforcement learning

methods in financial research. Due to space constraint, we choose to

focus on recent applications of advanced deep reinforcement learning

algorithms in stock market research.

Xiong et al. (2018) explore to apply deep reinforcement learning to train

29

an adaptive stock trading strategy to maximize return. Specifically, the

authors choose to use the DDPG algorithm to find the optimal trading

strategy in complex and dynamic stock market and demonstrate that

DDPG outperforms traditional min-variance portfolio allocation method

and the Dow Jones Industrial Average in terms of return. As a closely-

related study, Li et al. (2019) also investigate the potential of utilizing

deep reinforcement learning for stock portfolio allocation. Similar to

Xiong et al. (2018), they propose an adaptive DDPG framework to

incorporate optimistic or pessimistic deep reinforcement learning that is

reflected in the prediction error.

Another work in this line of research is automating swing trading using

deep reinforcement learning (Azhikodan et al., 2019). While they the

DDPG algorithm as well, the authors highlight the importance of

incorporating stock value trend prediction into the reinforcement

learning system. To do so, they implement a sentiment analysis model

using a RCNN to predict stock trend from financial news. In addition to

these studies, Li et al. (2019) investigated how to use deep reinforcement

learning models to construct stock market investment strategy and more

broadly the impact of artificial intelligence on financial investment.

30

As we can see, adopting deep reinforcement learning to solve

sophisticated financial problems is a burgeoning area in recent years. It

is promising to explore more applications in the future.

5. Summary

The combination of the reinforcement learning framework and high-

capacity function approximators with deep neural networks makes it

possible for the agent to learn complex policies in high dimensional

environments and solve such complex high-dimensional problems end-

to-end. Looking forward, deep reinforcement learning holds the promise

to be an important component of intelligent systems that are able to

automate complex decision making and achieve human-level control.

In particular, a promising application of deep reinforcement learning is

to automate sequential decision making in finance. To this end, we hope

this study will motivate further research on applying deep reinforcement

learning algorithms on a variety of financial problems.

31

Appendix

1. Pseudocode of Algorithms

(1) Approximate policy iteration algorithm guaranteeing non-decreasing

expected return (Schulman et al, 2015)

32

(2) PPO, Actor-Critic Style

(3) DDPG algorithm (Lillicrap et al, 2016)

(4) TD3 algorithm (Fujimoto et al., 2018)

33

34

References

[1] Mnih V, Kavukcuoglu K, Silver D, Rusu A, et al. Human-level control through deep

learning. Nature, Vol. 508, 2015.

[2] Sutton R, Barto A. Reinforcement learning: an introduction. The MIT Press. Second

edition. 2018.

[3] Levine S. Deep reinforcement learning, decision making, and control. Department of

Electrical Engineering and Computer Science, UC Berkeley. 2019.

[4] OpenAI. Spinning up in deep reinforcement learning. OpenAI, 2018.

[5] Sutton R, McAllester D, Singh S, Mansour Y. Policy gradient methods for

reinforcement learning with function approximation. In Proceedings of the Annual

Conference on Advances in Neural Information Processing Systems (NIPS 2000),

2000.

[6] Schulman J. Optimizing expectations: from deep reinforcement learning to stochastic

computation graphs. Ph.D dissertation. UC Berkeley. 2016.

[7] Schulman J, Levine S, Moritz P, Jordan M, Abbeel P. Trust region policy optimization.

In Proceedings of the International Conference on Machine Learning (ICML 2015),

2015.

[8] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization

algorithm. OpenAI. 2017.

[9] Silver D, Lever G, Heess N, Degris t, Wierstra D, Riedmiller M. Deterministic policy

gradient algorithms. In Proceedings of the International Conference on Machine

Learning (ICML 2014), 2014.

[10] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M.

Playing Atari with deep reinforcement learning. 2013.

[11] Lillicrap T, Hunt J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D.

Continuous control with deep reinforcement learning. In Proceedings of the

International Conference on Learning Representations (ICLR 2016), 2016.

35

[12] Fujimoto S, van Hoof H, Meger D. Addressing function approximation error in actor-

critic methods. In Proceedings of the International Conference on Machine Learning

(ICML 2018), 2018.

[13] Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: off-policy maximum entropy

deep reinforcement learning with a stochastic actor. Berkeley Artificial Intelligence

Research, UC Berkeley. 2018.

[14] Mnih V, Badia A, Mirza M, Graves A, Harley T, Lillicrap T, Silver D, Kavukcuoglu K.

Asynchronous methods for deep reinforcement learning. In Proceedings of the

International Conference on Machine Learning (ICML 2016), 2016.

[15] Wang J, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo J, Munos R, Blundell C,

Kumaran D, Botvinick M. Learning to reinforcement learn. In CogSci, 2017.

[16] Finn C. Learning to learn with gradients. PhD dissertation. UC Berkeley. 2018.

[17] Ho J, Ermon S. Generative adversarial imitation learning. In NIPS, 2016.

[18] Heinrich J, Silver D. Deep reinforcement learning from self-play in imperfect-

information games. 2016.

[19] Xiong X, et al. Practical deep reinforcement learning approach for stock trading arXiv

preprint, arXiv:1811.07522, 2018.

[20] Xinyi, et al. Optimistic bull or pessimistic bear: adaptive deep reinforcement learning

for stock portfolio allocation. arXiv preprint arXiv:1907.01503, 2019.

[21] Li, Y., P. Ni, and V. Chang. An empirical research on the investment strategy of stock

market based on deep reinforcement learning model. 2019.

[22] Azhikodan, A.R., A.G. Bhat, and M.V. Jadhav. Stock Trading Bot Using Deep

Reinforcement Learning, in Innovations in Computer Science and Engineering. 2019,

Springer. p. 41-49.

[23] Liang, Z., et al. Adversarial deep reinforcement learning in portfolio management.

arXiv preprint arXiv:1808.09940, 2018.

联系⼈: 张娜 邮 箱：zhangna@pbcsf.tsinghua.edu.cn

36

