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1. Introduction  

Deep reinforcement learning has become a flourishing subfield of 

machine learning in the past decade. Two remarkable and well-known 

successful cases of using deep reinforcement learning to solve 

sophisticated games, Atari 2600 and AlphaGo, substantially catalyze the 

research interest in this direction globally. An important goal of machine 

learning research is to create intelligent systems that are able to automate 

complex decision making and achieve human-level control. Deep 

reinforcement learning holds the promise to be an important component 

of this system.  

 

Reinforcement learning is an experience-driven autonomous learning 

method. The essence of it is learning from interaction with the 

environment. Broadly, reinforcement learning has its early roots in the 

behaviorist psychology (trial-and-error learning) and optimal control (its 

solutions using value functions and dynamic programming). These two 

subfields provide the foundations for the modern reinforcement learning.  
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While reinforcement learning has made important progresses across 

various domains, a bottleneck is lack of scalability. Specifically, to 

successfully implement reinforcement learning for solving real-world 

tasks, the learning agents confront a challenge of deriving efficient 

representation of the environment (Mnih et al., 2015). In other words, 

reinforcement learning per se lacks scalability and is inherently limited 

to low-dimensional problems, a.k.a. “the curse of dimensionality”.  

The advances in deep learning provide a powerful tool to tackle this 

bottleneck confronted by reinforcement learning. Deep learning has 

powerful function approximation and automatic feature learning 

properties, which enables the reinforcement learning agent to effectively 

handle the unstructured environment. Incorporating deep learning into 

the reinforcement learning framework gives rise to the so-called deep 

reinforcement learning. Combining deep representation learning with the 

reinforcement learning framework makes it possible to learn complex 

policies in high dimensional environments and solve such complex high-

dimensional problems end-to-end.  

 

In this study, we aim to provide a brief overview of the core ideas and 

algorithms in reinforcement learning and deep reinforcement learning, 
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and summarize recent applications of deep reinforcement learning in 

stock market research.  

 

The rest of this study is organized as follows. Section 2 introduces the 

background, core concepts, mathematical set-up, and key algorithms 

reinforcement learning. Based on this, section 3 discusses the rise of deep 

reinforcement learning and surveys important and influential deep 

reinforcement learning algorithms. In section 4, we briefly summarize 

recent applications of deep reinforcement learning algorithms on stock 

market research. Then, we highlight primary challenges confronting deep 

reinforcement learning and discuss promising research directions going 

forward. Then, we summarize in section 5.  

2. Reinforcement Learning  

The fundamental idea underlying reinforcement learning is learning by 

interacting with the environment. This branch of machine learning 

focuses on much more on goal-directed learning from interaction than 

other forms of machine learning (Sutton and Barto, 2018). In this section, 

we firstly discuss the core ideas and essential features of reinforcement 

learning informally. Then we go on to formalize the problem and set up 

the mathematical model of it based on the Markov Decision Processes.  
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2.1 Key Concepts and Ideas of Reinforcement Learning 

Informally, reinforcement learning is “a computational approach to 

understanding and automating goal-oriented learning and decision 

making”(Sutton and Barto, 2018). It learns to map situations to actions 

in order to maximize a reward signal. In doing so, the RL agent is not 

told what actions to take under a given situation, but has to figure out the 

most-rewarding actions by trying them out. The two most distinguishing 

features of reinforcement learning are trial-and-error search and delayed 

reward (Sutton and Barto, 2018).  

 

The primary elements in a reinforcement learning system include: an 

agent, an environment, a policy, a reward signal, and optionally a value 

function and a model of the environment. At each time step, the agent 

(partially) observes the state of the environment and then take an action 

following a policy, which would change the state of the environment and 

send a reward signal to the agent. The goal of the agent is to maximize 

the total rewards. In particular, the policy plays a central role in the 

reinforcement learning system. It specifies a rule that tells the agent what 

action to take in a given state. We will formalize policies and the 

environment dynamic in this section later.  
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Figure 1: Agent learn by interacting with the environment (Sutton and Barto, 2018) 

 

A fundamental dilemma in reinforcement learning is the trade-off 

between exploitation and exploration, which is not present in the 

supervised learning and unsupervised learning. This challenge originates 

from the trial-and-error search feature. On the one hand, the learner 

should take actions that is known to yield high rewards by exploiting its 

past experiences, on the other, the agent needs to explore what actions 

lead to higher reward in order to maximize the total rewards over the life 

time. In fact, one active research area is designing the exploration 

strategies that can achieve a better balance between exploitation and 

exploration.  

 

Another feature of the reinforcement learning is goal-oriented, which 

means the learning agent explicitly considers the whole problem while 

interacting with an uncertain environment (Sutton and Barto, 2018).  
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2.2 Mathematical Framework of Reinforcement Learning  

Markov Decision Processes (MDPs) is the standard mathematical 

framework to formalize the single-agent sequential decision-making 

problems. For the denotation, we follow OpenAI Spinning Up (OpenAI, 

2018). The MDPs is a 5-element tuple <S, A, T, R, r>:  

- A state space S (discrete or continuous).  

- An action space A (discrete or continuous).  

- Transition dynamics T (deterministic or stochastic).  

- An immediate reward function R.  

- A discount factor 𝛾 ∈ (0, 1).  

 

The state can be viewed as all information about the uncertain 

environment that is available to the agent. The transition dynamics satisfy 

the Markov property, which means that the transitions only depend on 

the most recent state and action and not the previous history. In other 

words, only the current state and action affects the next state. The Markov 

property depends on the assumption that the environment state is fully 

observable to the agent, which may not be true in reality. A generalization 

of MDP is the Partially Observable Markov Decision Processes 

(POMDPs), which assumes the only part of the state is accessible to the 

agent.  
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To date, much of the reinforcement learning theory literature focuses on 

finite MDPs that has finite state, action, and reward sets.  

 

 
Figure 2: The Markov Decision Processes (Levine, 2019) 

 

In this mathematical setup, the policy 𝜋 is a function that maps the state 

space to a distribution over the action space, which can be either 

deterministic or stochastic. Starting from an initial state and following a 

particular policy, the agent will generate a sequence of states and actions, 

which is called a trajectory/rollout/episode, denoted by 𝜏. Typically, the 

first state in the trajectory is randomly sampled from a start-state 

distribution.  

 

The reward signal is a function of the current state and action pair, and 

optionally the next state. The central optimization problem in the 

reinforcement learning system is therefore to select a policy to maximize 

the expected accumulative rewards (instead of merely the immediate 

reward) over the entire trajectory. From this sense, designing the reward 
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function is of critical importance, and this active line of research is 

termed as reward shaping.  

 

Value functions  

The value of a state refers to the expected return the agent would receive 

if the agent starts from that state and follow a particular policy thereafter. 

Intuitively, it indicates how good a state is for the agent in terms of 

expected return. While the reward signal specifies what is good at a time 

step, the value function characterizes what is good over the long run. The 

value function of a state s under a policy 𝜋 is formally defined as  

. 

A closely related term is the action-value function 𝑄!(𝑠, 𝑎), which refers 

to the expected return if the agent starting from state s and taking an 

action a and following a policy 𝜋 henceforth, denoted as  

.  
There are different ways to estimate the value function and action-value 

function. For instance, we can use the Monte Carlo methods or a 

parameterized function approximator to estimate the value function as 

well as the action-value function from experience. The optimal policy in 

a state will select the action that maximizes the expected return in that 
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state. The corresponding optimal value functions are defined formally as 

follows:  

 

. 

One view in the reinforcement learning community is that value 

functions are crucial for efficient search in the policy space (Sutton and 

Barto, 2018), while another may prefer to search in the space of polices 

directly without resorting to the value functions.  

 

Bellman Equations   

The value functions satisfy the self-consistency condition described by 

the Bellman Equation, which expresses a recursive relationship between 

the value of a state and the values of successor states. More specifically, 

it specifies the value of a state equals the expected reward the agent can 

get from that state plus the value of the expected next state. The Bellman 

equations for both the value functions and optimal value functions are  

 

 

As we will see, the Bellman equations provide a basis for many 
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approaches to approximate and learn the value functions. For finite 

MDPs, there is a unique solution for the Bellman equations for the 

optimal value functions. However, for real-world problems, we generally 

do not solve the Bellman equations exactly, but settle for approximate 

solutions. Once we have the optimal value functions, it is relatively easy 

to derive the optimal policy from them.  

 

Advantage functions  

The idea of the advantage functions is akin to removing a baseline from 

a signal. It provides information about how good an action compared to 

the average. We formalize this idea by defining the advantage function 

as  

 

The advantage function is widely used in policy-based reinforcement 

learning algorithms as we will discuss later.  

 

In general, there are three classes of methods for solving the finite MDPs 

problems: dynamic programming, Monte Carlo methods, and temporal-

difference learning. Each class has its strengths and weaknesses. 

Fortunately, we can combine them to create solutions that can outperform 

any one class alone.  
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Figure 3: Two dimensions of the space of reinforcement learning methods: the depth and 

width of the updates (Sutton and Barto, 2018) 

2.3 Reinforcement learning algorithms 

The mainstream reinforcement learning algorithms can be roughly 

divided into three classes: value-based methods, policy-based methods, 

and hybrid methods that combined these two approaches. At the same 

time, it is worthy to note that there are other important branching points 

in the reinforcement learning algorithms, each characterizes the 

algorithms from a different and important aspect. While the we organize 

various algorithms following the first categorization criteria, we will 

investigate the algorithms from a variety of branching points in order to 

gain a comprehensive and deep understanding of them. To this end, we 
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firstly summarize these critical branching points before diving into the 

ocean of reinforcement learning algorithms.  

 

Model-based vs. Model-free  

The distinguishing point is whether a model of the environment is 

available to the agent.  

For model-based reinforcement learning, the agent will learn a transition 

model to simulate the environment, and therefore the agent can learn 

without interacting with the environment directly. This is especially 

useful when interacting with the environment is very costly in real-world 

tasks. Then the learned environment models can be used for planning. By 

contrast, for model-free RL, such knowledge of the environment 

dynamics is not available. The agent learns though trial-and-error 

explicitly. Of course, there is no free lunch. The upside of model-based 

methods is higher sample efficiency, but the downside is that they suffer 

from model bias.  

 

On-policy vs. Off-policy 

On-policy reinforcement learning algorithms conduct updates using 

trajectories generated by the policy, whereas off-policy approaches can 

make use of trajectories generated by other policies. On-policy methods 
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have lower sample efficiency than their off-policy counterparts as the 

former cannot use old data or data from different polices. However, the 

reliance on on-policy data makes the on-policy algorithms more stable 

than off-policy methods.  

 

Finite-horizon vs. Infinite-horizon 

For Infinite-horizon reinforcement learning, the number of time steps in 

the MDP goes to infinite. In this case, we need a discount factor when 

calculating the expected rewards. Correspondingly, there are finite 

number of time steps in the finite Finite-horizon reinforcement learning. 

These two kinds of methods are appropriate to model different real-world 

tasks in practice.  

 

Finally, also note that while there are various reinforcement learning 

algorithms, they can be framed into a three-step loop as shown below. In 

the rest of this section, we will focus on investigating these steps when 

analyzing important RL algorithms in the rest of this section.  
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Figure 4: The anatomy of reinforcement learning algorithms (Levine, 2019) 

2.3.1 Value-based methods 

Now we are ready to study the real meat of the study and we begin with 

the value-based methods. This class are based on the value function or 

action value function (a.k.a. “Q-function”) that we formulated in the 

previous part. The agent takes an action based on the evaluation of the 

value function. As noted earlier, once we have the optimal value function, 

we can derive the optimal policy from it. If we have the optimal value 

function 𝑉∗(𝑠) , we can derive the optimal policy by conducting a one-

step-ahead search and finding the action(s) that is greed with respect to 

the value function. Alternatively, if the optimal action value function 

𝑄∗(𝑠, 𝑎)	is available, we find the optimal policy simply by choosing the 

action(s) that maximize 𝑄∗(𝑠, 𝑎) . From this perspective, efficiently 

estimating the value function plays a central role for the value-based 

methods.  



  
 
 

15 
 

 

Sarsa 

We begin our study of value-based methods with the Sarsa algorithm. It 

is uses on-policy temporal-difference learning method, combining the 

ideas from Monte Carlo methods and dynamic programming, to learn the 

action-value function (Sutton and Barto, 2018). At each time step, Sarsa 

uses the episodes generated by the current policy to update the action-

value function as below 

 
Sarsa continuously update the action value function in this way and 

concurrently update the policy greedily with respect to the updated value 

function.  

 

Q-learning 

Q-learning is an off-policy temporal difference learning algorithm. While 

Q-learning still uses the current policy to choose state and action pairs to 

visit, the learned Q function would directly approximate the optimal 

action value function independent of the policy being followed (Sutton 

and Barto, 2018). Formally, the update of the Q function is defined as  

 
Learning this way enables earlier convergence compared to the on-policy 
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value-based Sarsa.  

2.3.2 Policy-based methods 

Policy Gradient 

Unlike the value-based methods, the policy-based methods learn the 

policy directly without resorting to the value functions. (In DRL, the 

policy is parameterized as a deep neural network as we will see in section 

3.) In contrast to the value-based methods, the policy search approaches 

optimize the policy performance directly without consulting the value 

function estimates, which give rise to several advantages. For example, 

learning a parameterized policy can handle the continuous action space 

naturally and also is a good way of inject prior knowledge about the 

policy. However, there is no dominating algorithms so far and it is 

important to understand the tradeoff between different classes of 

reinforcement learning methods. In general, the policy search approach 

trades off sample efficiency for higher stability.  

 

The core idea underlying the policy gradient is using gradient ascent to 

estimate the parameters of the policy by maximizing the expected 

rewards. Formally, let 𝜋#  be a stochastic policy parameterized by 𝜃, 

and 𝐽(𝜋#)  the expected return under this policy. Then the policy 
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gradient is ∇#(𝐽(𝜋#)). Given a learning rate of 𝛼,	we can use update the 

policy using the standard gradient ascent (or other gradient ascent 

algorithms) 

 

The general form of the policy gradient is  

 
with Φ$ be the sum of all rewards over the trajectory, the “reward-to-

go”, or other forms. It is called the policy gradient theorem. This crucial 

result reduces the performance gradient to an expectation, which has as 

a simple form and can be estimated by samples.  

 

Vanilla Policy Gradient 

We start with the Vanilla Policy Gradient (VPG), which is arguably the 

simplest algorithm among the policy search class (Sutton et al, 2000). 

For VPG, we formulate the policy gradient using the advantage function 

introduced earlier. Mathematically, in the general form of the policy 

gradient, we replace Φ$  with the advantage function for the current 

policy 𝐴!!(𝑠$, 𝑎$) (Schulman et al, 2016). VPG is on-policy algorithm 

as it conducts exploration by sampling actions based on the most recent 

policy. This approach is susceptible to local optima.  
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Trust Region Policy Optimization 

A problem with the VPG is that a large step size can be dangerous as it 

may collapse the policy performance. The Trust Region Policy 

Optimization (TRPO) addresses this challenge by limiting each policy 

gradient update to prevent the updated policy deviates too much away 

from the previous one (Schulman et al, 2015). Such deviation is 

measured by the KL divergence between the current policy and the 

updated policy. In this way, the on-policy TRPO is able to improve the 

policy monotonically with non-trivial step sizes.  

 

Proximal Policy Optimization (PPO) 

The design of PPO shares the same motivation with the TRPO. But PPO 

manages to attain comparable stability and reliability with TRPO in terms 

of empirical performance, but only uses first-order optimization (instead 

of second-order optimization as in TRPO) (Schlman et al., 2017). Hence, 

PPO is easier to understand and simpler to implement than TRPO. To do 

so, PPO uses a surrogate objective with clipped probability ratios to form 

a lower bound of the policy performance. And then optimizing the policy 

by alternating between sampling data from the policy and performing a 

number of epochs of optimization on the sampled data.  
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2.3.3 Hybrid methods 

Actor-Critic Methods 

The hybrid methods combine the valued-based and policy-based 

methods, which learn approximations to both the policy and value 

functions. For the classic actor-critic method, the learned policy plays the 

role of choosing action and hence is the actor, and the estimated value 

function would criticize the action made by the actor and therefore is the 

critic. In this way, we the actor-critic style methods are able to effectively 

reduce variance and accelerate learning.  

 

Deterministic Policy Gradient 

The Deterministic Policy Gradient (DPG) is a model-free off-policy 

actor-critic algorithm (Silver et al., 2014). Theoretically, the 

deterministic policy gradient is shown to be the expected gradient of the 

action-value function, and therefore it can be estimated more efficiently 

than the stochastic policy gradient. In addition, the deterministic policy 

is in fact a limiting case of the stochastic policy gradient with the policy 

variance tends to zero, which implies that the policy gradient machinery 

also applies to the deterministic policy gradients (Silver et al., 2014).   

 

The DPG learns a Q-function and a policy concurrently, which are 
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updated to improve each other in an actor-critic style. Specifically, the 

actor updates the policy in the direction of the off-policy deterministic 

policy gradient (which is the gradient of the action-value function), and 

the critic estimates the action-value function using Q-learning. The DPG 

enjoys higher sample efficiency as they can reuse old data. As we will 

see in the next section, Deep Deterministic Policy Gradient extends the 

DPG to high-dimensional state-action space.  

3. Deep Reinforcement Learning  

3.1 The Rise of Deep Reinforcement Learning  

The integration of reinforcement learning and deep learning is arguably 

one of the most exciting and fruitful directions in the machine learning 

field in recent years, which give rise to the flourishing deep 

reinforcement learning.  

 

In this subfield, we use deep neural networks to approximate a stochastic 

policy. Common stochastic policies in include categorical policies and 

diagonal Gaussian policies, which are typically used for discrete action 

spaces and continuous action spaces separately. For training stochastic 

polices, we need to first sample action from the policy and then compute 

the log likelihoods of the sampled actions.  
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3.2 Key Deep Reinforcement Learning Algorithms 

 
 

Figure 5: A non-exhaustive taxonomy of the RL algorithms (OpenAI, 2018) 

3.2.1 Value-based Methods 

DQN 

The success and influence of the classic Deep Q-Network (DQN) (Mnih 

et al., 2013; 2015) has secured its position in the machine learning history. 

In fact, it substantially launched the deep reinforcement learning field. 

DQN extends the Q-learning algorithm by using deep neural networks as 

the Q-function approximator, which enables it to learn from high-

dimensional state spaces directly. In practice, two practical techniques 

significantly improve the DQN performance: (1) experience replay (a.k.a. 

replay buffer) (break the correlation between successive experience 

samples); (2) target networks (provide consistent targets and reduce 
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variance). These two technical innovations enable the DQN to learn 

value functions using deep neural networks in a stable and robust way.  

 

However, while the DQN can handle discrete and low-dimensional 

action spaces well, there is no straightforward way to extend it to 

continuous action spaces which are common for many real-world cases 

such as continuous control. The design of the DDPG is partly motivated 

to address this constraint of DQN.  

3.2.2 Hybrid Methods 

Deep Deterministic Policy Gradient 

The Deep Deterministic Policy Gradient (DDPG) extends the DPG to 

high-dimensional state-action space (Lillicrap et al., 2016). To do so, it 

combines the insights from the DQN and DPG outlined in Section 2. The 

DDPG is a model-free, off-policy, actor-critic algorithm that uses deep 

function approximators to learn policies in high-dimensional and 

continuous action spaces. In particular, the DDPG adopts the same 

technical innovations replay buffer and target networks as in DQN.  

 

Since it is not straightforward to extend DQN to continuous action space, 

this motivates the DDPG to use the actor-critic method as in the DPG. 
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The critic, an action-value function approximator, is learned by 

exploiting the Bellman equation using off-policy data. This is typically 

done by minimizing a mean-squared Bellman error (MSBE) function, 

which indicates how closely the current action-value approximator 

comes to satisfying the Bellman equation. As it is challenging to compute 

the maximum over actions in the target, the DDPG uses the target policy 

network instead. The learning for the actor side is relatively easy. A 

parameterized actor function is updated following the policy gradient, 

using the expected gradient of the action-value function approximator we 

learned. The pseudocodes can be found in Appendix 1.  

 

However, a limitation of DDPG is that it typically requires a lot of 

episodes to train. In addition, its brittleness and hyperparameter 

sensitivity makes it challenging to implement in real-world tasks.  

 

Twin Delayed DDPG 

A common problem of DDPG is that the errors of the Q-function 

approximator always lead to overestimation of the true Q-values. The 

Twin Delayed DDPG (TD3) improves the DDPG algorithm by 

introducing innovative mechanisms to address the problems in DDPG 

(Fujimoto et al., 2018). First of all, TD3 uses clipped double-Q learning 
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to replace the critic in the actor-critic setting. A second technique is 

delayed policy updates. In TD3, the policy network is updated at a lower 

frequency than the value network. Finally, target policy smoothing 

regularization is introduced to reduce the variance of the target. In 

practice, it is done by adding random noise to the target policy. These 

techniques together significantly improve the performance of TD3 

compared to DDPG.  

 

Soft Actor Critic 

Beside TD3, another descent of DDPG is Soft Actor Critic (SAC) 

(Haarnoja et al., 2018). In contrast to learning a deterministic policy as 

in DDPG, SAC optimizes a stochastic policy in an off-policy way. It can 

be implemented in discrete or continuous action spaces.  

 

A key feature of SAC is entropy regularization. The policy is trained to 

maximize the sum of the expected future return and entropy, which is 

closely related to the fundamental exploration and exploration trade-off 

of reinforcement learning. We briefly introduce the entropy-regularized 

reinforcement learning. The core difference is that we alter the 

reinforcement learning objective by augmenting the maximum reward 

with a maximum entropy term, which improves the exploration and 
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robustness. The augmented objective is denoted as  

 
In particular, 𝛼  is the entropy regularization coefficient that can be 

either fixed or varying over the course of training. This hyperparameter 

controls the tradeoff between exploration and exploitation, which should 

be tuned according to the environment. It is easy to see that higher 

entropy encourages more exploration. Based on this new objective, the 

value functions in the maximum entropy reinforcement learning should 

be altered accordingly. 

 

For implementation, SAC also adopts the clipped double-Q learning 

technique to improve the performance similar to TD3. Empirical results 

show that SAC outperforms prior on-policy and off-policy reinforcement 

learning algorithms in terms of sample efficiency and stability.  

 

Asynchronous Advantage Actor Critic 

Although the classic DQN addresses the fundamental stability problem 

in deep reinforcement learning, it is computationally expensive. In 

particular, while the experience replay buffer contributed to reduce non-

stationarity and decorrelates updates, the drawbacks are higher memory 

and computation cost and updates using data generated from older 
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policies.  

 

An alternative line of research exploits parallel computation to speed up 

learning and improve on stability, which motivates the design of 

Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016) 

algorithm. The key underlying idea is to asynchronously execute 

multiple agents in parallel on multiple instances of environment, which 

can improve the robustness of both on-policy and off-policy deep 

reinforcement learning performance. In particular, A3C combines 

advantage updates with actor-critic framework and uses parallel actor 

learners to update a shared model to stabilize the learning process. In this 

way, A3C outperforms prior deep reinforcement learning algorithms and 

becomes of the most popular starting point for subsequent works in this 

field. A closely related algorithm is Advantage Actor Critic (A2C), in 

which only one agent is used (Wang et al., 2017).  

3.3 Current Challenges and Research Directions 

We end our survey of the aforementioned mainstream deep 

reinforcement learning algorithms with a brief discussion of current 

challenges and some of the promising further research directions (this is 

by no means exhaustive).  
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Meta Learning 

The current machine learning research focuses on end-to-end learning, 

which means to learn to solve a problem absolutely from scratch without 

accessing any domain-specific knowledge. However, this type of 

learning usually requires a lot of data to train and does not generalize 

well to different but similar tasks. On the contrary, human beings can 

learn to solve a problem from only a few examples and find it easy to 

solve a similar task taking advantage of previously acquired skills. 

Inspired by the way human beings learn, meta learning, a.k.a. learning to 

learn, aims to not only speed up learning but also learn a range of skills 

concurrently. For more details, we direct the readers to a comprehensive 

survey of meta learning (Finn, 2018).  

 

Imitation Learning and Inverse Reinforcement Learning 

Imitation learning refers to learning from demonstrations, which is a 

straightforward way to acquiring new skills. It is traditionally known as 

behavior cloning. A downside of this approach is the difficulty to adapt 

to new situations. There are ongoing studies on tackling this challenge.  

 

Inverse reinforcement learning (IRL) aims to estimate an unknown 
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reward function from observed trajectories. IRL can be combined with 

reinforcement learning to better learn from demonstrations. Theoretically, 

it is shown that IRL can be reduced to measure matching (Ho and Ermon, 

51). This motivates the design of generative adversarial imitation 

learning (GAIL), which can directly extract a policy from data.  

 

Multi-agent Reinforcement Learning 

For many real-world scenarios, there are multiple agents acting in an 

environment instead of a single one. In such case, the MDPs framework 

is no longer adequate to model the problem. Instead, we can resort to the 

stochastic game to formulate a set-up, which allows us to consider new 

questions, such as communication among agents and how they should 

cooperate. A current hot topic is on about integrating mutli-agent deep 

reinforcement learninging with game theory (Heinrich and Silver, 2016).  

4. Recent Applications of DRL in Finance 

In this section, we investigate application of deep reinforcement learning 

methods in financial research. Due to space constraint, we choose to 

focus on recent applications of advanced deep reinforcement learning 

algorithms in stock market research.  

 

Xiong et al. (2018) explore to apply deep reinforcement learning to train 
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an adaptive stock trading strategy to maximize return. Specifically, the 

authors choose to use the DDPG algorithm to find the optimal trading 

strategy in complex and dynamic stock market and demonstrate that 

DDPG outperforms traditional min-variance portfolio allocation method 

and the Dow Jones Industrial Average in terms of return. As a closely-

related study, Li et al. (2019) also investigate the potential of utilizing 

deep reinforcement learning for stock portfolio allocation. Similar to 

Xiong et al. (2018), they propose an adaptive DDPG framework to 

incorporate optimistic or pessimistic deep reinforcement learning that is 

reflected in the prediction error.  

 

Another work in this line of research is automating swing trading using 

deep reinforcement learning (Azhikodan et al., 2019). While they the 

DDPG algorithm as well, the authors highlight the importance of 

incorporating stock value trend prediction into the reinforcement 

learning system. To do so, they implement a sentiment analysis model 

using a RCNN to predict stock trend from financial news. In addition to 

these studies, Li et al. (2019) investigated how to use deep reinforcement 

learning models to construct stock market investment strategy and more 

broadly the impact of artificial intelligence on financial investment.  
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As we can see, adopting deep reinforcement learning to solve 

sophisticated financial problems is a burgeoning area in recent years. It 

is promising to explore more applications in the future.  

5. Summary  

The combination of the reinforcement learning framework and high-

capacity function approximators with deep neural networks makes it 

possible for the agent to learn complex policies in high dimensional 

environments and solve such complex high-dimensional problems end-

to-end. Looking forward, deep reinforcement learning holds the promise 

to be an important component of intelligent systems that are able to 

automate complex decision making and achieve human-level control.  

 

In particular, a promising application of deep reinforcement learning is 

to automate sequential decision making in finance. To this end, we hope 

this study will motivate further research on applying deep reinforcement 

learning algorithms on a variety of financial problems.  
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Appendix  

1. Pseudocode of Algorithms 

 

(1) Approximate policy iteration algorithm guaranteeing non-decreasing 

expected return (Schulman et al, 2015) 
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(2) PPO, Actor-Critic Style 

 

 
 

(3) DDPG algorithm (Lillicrap et al, 2016) 

 

 

 

(4) TD3 algorithm (Fujimoto et al., 2018)  
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