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【摘要】 过去十年随着深度学习的崛起，人工智能在自然语言

处理、机器视觉等很多应用领域取得了突破性进展。情绪分析是

自然语言处理领域的一个重要研究课题，近几年越来越多的研究

工作在积极探索利用深度学习来更好地解决文本情绪分析的问

题。两大方面因素促使该研究方向成为热点和重点：一方面网络

的全面普及和社会化媒体（例如 Twitter、博客、维基、论坛、

社交网络、内容社区等）的快速发展使人类社会积累了史无前例

的大量的文本数据，这如同创造了一片全新的文本数据的“海
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洋”；另一方面深度学习技术的突破为大规模自动化处理包括文

本在内的非结构化数据提供了强大有效的工具，这也使得高效探

索文本信息海洋并从中挖掘相关的知识成为可能。 

除了传统的结构化数据，经济金融领域也积累了大量相关的文本

信息，所以文本分析技术的发展无疑对经济金融学术研究和产业

应用都有巨大潜在影响力。在前述两方面因素的共同驱动下，利

用深度学习进行文本挖掘成为机器学习和金融科技领域共同的

研究热点。 

本文旨在汇总分析深度学习在文本分析中的应用和取得的成果。

为此，我们首先探讨分析了深度学习架构近几年的最新突破和进

展；在此基础上，本文汇总整理了不同深度学习架构在文本挖掘

上的应用和成果；最后，我们指出了该领域当前仍面临的挑战和

今后的一些研究方向。 

（注：本篇报告主要基于外文参考文献展开研究，正文以英文形

式呈现。） PB
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1. Overview of Sentiment Analysis  

Sentiment analysis has been an ongoing and important research topic in the natural 

language processing field. It aims to determine the judgement of a writer with respect 

to a certain topic based on a given text, typically a single sentence or an entire document 

(Glorot et al., 2011). There are a number of different names for this task, such as opinion 

extraction, opinion mining, sentiment mining, and subjectivity analysis.  

As sentiment analysis is closely related to decision-making and predictions, it has 

found numerous applications in a wide span of domains, from buying products online 

from Amazon or Alibaba to making multi-million investment decisions in emerging 

technology, from predicting US presidential election to extracting investor views from 

stock reviews. From a high-level perspective, the capability to extract opinions from 

the flooding digital text enables sentiment analysis to shape the business landscape 

remarkably and to exert influence on the society profoundly.  

In the computer science literature, sentiment analysis is typically framed as a 

classification or regression problem. Historically, machine learning researchers have 

adopted a variety of algorithms, both supervised and unsupervised, to tackle the 

sentiment analysis task, but only achieved limited success. For instance, earlier research 
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investigates multiple classic machine learning algorithms for sentiment classification, 

such as naive bayes, support vector machine, and maximum entropy. However, these 

early approaches are not competent enough to extract fine-grained sentiment from the 

given text.  

Over the past decade, the deep learning evolution has brought many ground-

breaking progresses in various subfields from computer vision to natural language 

processing. In line with this trend, the machine learning community has adopted a 

variety of deep learning techniques for sentiment analysis and therefore improved the 

performance on benchmark datasets substantially.  

In addition to the methodological breakthroughs primarily driven by deep learning, 

the exponentially increasing online data across domains further stimulates the interest 

in sentiment mining. In particular, the rise of social media on the Web such as social 

networks, micro-blogs, ratings and reviews contributes to the accumulation of a huge 

opinionated digital data. Indeed, the society as a whole has produced an ocean of online 

text on an unprecedented scale in human history. Now, the challenge is how to 

efficiently and effectively explore this ocean of data. “We are drowning in information 

and starving for knowledge”, as Rutherford Roger put it. In light of this, sentiment 

mining is part of the effort toward this goal of extracting knowledge from the vast text 

ocean.  

In a nutshell, the advancements in machine learning techniques and the exploding 

online data together make sentiment analysis a hot and crucial topic in both academic 

PB
CS
F



 
  
 

3 
 

research and industrial practices. On the one hand, we see a surge of research in 

sentiment classification in the past decade. On the other, we also witness a rapidly 

growing applications of sentiment analysis methods by corporations, start-ups as well 

as government agencies. For instance, there are start-ups focusing on providing 

sentiment analysis of unstructured data. Moreover, global companies are establishing 

in-house apartments to build such capacity.  

This study seeks to provide a survey of recent applications of deep learning 

approaches in sentiment analysis. In doing so, we begin by reviewing the relevant 

background including word embeddings and important deep learning architectures. 

Equipped with these, we then survey representative work on applying these deep 

learning techniques for sentiment classification. With a comprehensive picture in mind, 

we summarize certain remaining challenges in sentiment analysis and discuss future 

research directions.  

 

2. Word Embedding and Deep Learning Architectures  

2.1 Word Embedding 

The arguably most important common denominator of NLP tasks is figuring out 

how to represent words as the input to any language models. Words are typically 

represented as vectors that can effectively capture the similarities, differences as well 

as relationships between them.  

Among various ways to do word embedding, the simplest one to encode words 
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into numeric vectors is one-hot vector, which represent every word as a V-dimensional 

vector with all 0s but one 1 at the index of the word of that language. V is the size of 

the vocabulary. While simple, the disadvantages of one-hot vector are obvious: the 

vector is very high-dimensional and sparse; moreover, modeling each word as an 

independent vector fails to directly capture any similarities and all semantic connections 

among words. These motivate researchers to investigate into alternative ways, which 

gives rise to different classes of word embedding methods, as we will see below.  

SVD Based Word Embedding 

For SVD-based word embedding, the first step is to loop over a large dataset to 

count the co-occurrence of words. Such counts then form a matrix. Two specific choices 

for this matrix are the word-document matrix and the window-based co-occurrence 

matrix. Secondly, we perform SVD on the matrix and get US𝑉𝑉𝑇𝑇. Then the rows of U 

will be used as the word embeddings. In practice, we typically select a submatrix of U 

based on desired percentage variance, which gives a representation of all words in the 

corpus. Of course, this class of methods is not perfect and has its own problems. The 

matrix is very sparse and high-dimensional, which requires quadratic time to calculate, 

and changes every time we introduce new words into the corpus, just to name a few.  

Iteration Based Word Embedding 

Iteration-based methods address some of the problems mentioned above. The main 

idea is to use the classic backpropagating method. We build a model whose parameters 

are the word vectors, and design an appropriate objective to train the model. During the 
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training process, we update the parameters per iteration. In other words, we capture the 

word co-occurrence one at a time instead of capturing all of them at the same time like 

the SVD method. In this category of word embeddings, popular methods include 

word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014).  

Sentiment-Oriented Word Embedding Through Neural Network 

In addition, we can use neural network to learn sentiment-oriented word 

embedding. To capture both semantic and sentiment information, Maas et al. (2011) 

mix an unsupervised probabilistic model and a supervised sentiment component to learn 

word vectors with “semantic term-document information as well as rich sentiment 

content.” Alternatively, Labutov and Lipson (2013) propose to build up on an existing 

word embedding and re-purpose it to improve sentiment classification performance. To 

do so, they take the word embedding and label data as input and learn a re-embedding 

vectors that achieves better improvement on sentiment analysis.  

2.2 Attention Mechanism, Transformer and BERT for Sentiment  

We refer the readers to a Deep Learning textbook for a review of the classic deep 

learning architectures including Multi-Layer Perceptron (MLP), Convolutional Neural 

Network (CNN), Recurrent Neural Network (RNN), and Long-Short Term Memory 

(LSTM)①. Due to limited space, we choose to focus on the recent breakthroughs in 

deep learning architectures, which has far-reaching influence on sentiment analysis and 

the NLP field at large.  

                                     
① LSTM is one kind of RNNs.  
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2.2.1 Attention Mechanism 

The research on attention has a long history in cognitive neuroscience. Take human 

vision for example, we do not process all sensory input at any time; instead, attention 

allows us to prioritize and focus on a small fraction of the input that is most relevant. 

There are various types of attention in cognitive neuroscience, selective attention, 

covert attention, and spatial attention (Zhang et al, 2020). These findings inspire the 

deep learning community to introduce similar attention idea into the neural networks.  

In NLP, attention is firstly introduced to tackle the information bottleneck problem 

of the Seq2Seq model (Bahdanau et al., 2015). Specifically, the attention mechanism 

provides direct connections between the decoder and encoder (instead of only the 

encoder output) and enables the decoder to focus on a particular part of the source 

sequence. While attention is initially used in the Seq2Seq model, it actually has very 

wide applications beyond this particular architecture. Indeed, the attention mechanism 

is a general deep learning technique.  

We now focus on how to transform the attention into mathematical models. In a 

general setting, we have a query as input and a set of values in the memory, attention is 

used to compute a weighed sum of the values, which depends on the query (Figure 1). 

Let us begin with one attention layer and breakdown the attention calculation process 

into three steps. First, we calculate an attention score via a score function. Then, we 

take a softmax of the attention scores, which gives an attention distribution. Finally, we 

use the attention distribution to compute a weighted sum of the values, which is the 
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attention output.  

In the first step, it is worthy to note that there are different choices of the score 

function, which leading to different attention layers accordingly. A simple and popular 

one is dot-product attention. Alternative score functions include the multiplicative 

attention and the additive attention.  

 

Figure 1: Illustration of attention mechanism (Zhang et al., 2020) 

2.2.2 Transformer 

A primal motivation for the Transformer is to tackle the fundamental constraint of 

sequential computation in existing recurrent models. In recent years, the attention 

mechanism has been incorporated into the conventional recurrent network to draw 

global dependencies of input and output. Such combined architectures have achieved 

state-of-the-art performance in multiple NLP tasks. While the attention mechanisms 

have become an integral part of both sequence modeling and transduction models, the 

sequential nature of the recurrent network still precludes the parallelization of the model 

training procedure. This constraint motivates the researchers to search for an 
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architecture without recurrent network.  

Transformer is the first network architecture that is solely based on attention 

mechanisms (Vaswani et al., 2017). It generalizes well to various NLP tasks and 

achieves superior results, while significantly reduces the training time compared to 

existing RNN-based architectures. In general, the Transformer has an encoder-decoder 

structure, as shown in Figure 2. In particular, it uses stacked self-attention and point-

wise, fully connected layers for both the encoder and decoder.  

 

Figure 2: The model architecture of the Transformer (Vaswani et al., 2017) 

PB
CS
F



 
  
 

9 
 

We now dive into the self-attention block in the Transformer. The input consists of 

queries, keys, and values. The attention is calculated as a weighted sum of the values, 

while the weights is the dot product of queries and keys scaled by the square root of the 

dimension of the keys (Figure 3).  

 

Figure 3: Scaled dot-product attention (Vaswani et al., 2017) 

In practice, the queries, keys, and values are firstly projected into a lower 

dimension h times. Then we conduct the scaled dot-product attention on each of these 

projected versions and concatenate the results. In this way, we get the so-called multi-

head attention. The underlying intuition is that the “multi-head attention allows the 

model to jointly attend to information from different representation subspaces at 

different positions” (Vaswani et al., 2017).  
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Figure 4: Multi-head attention (Vaswani et al., 2017) 

2.2.3 BERT: Pretraining and Fine Tuning 

Based on the Transformer, Devlin et al. (2018) introduce a new language 

representation model called Bidirectional Encoder Representations from Transformers 

(BERT), which is designed to “pretrain deep bidirectional representations from 

unlabeled text by jointly conditioning on both left and right context in all layers”. This 

pre-trained model can then be fine-tuned with one additional output layer to yield SOTA 

performance on downstream tasks including sentiment analysis.  

The overall architecture of BERT is a multi-layer bidirectional Transformer 

encoder. This model architecture allows BERT to make crucial improvements over 

existing techniques. Recognizing that a key constraint of standard language models is 

their unidirectionality, BERT alleviates this limitation by using masked language 

models to enable pre-trained deep bidirectional representations. The pre-trained 

representations of BERT greatly reduce the need for heavily-engineered task-specific 
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architecture. In fact, a distinguished feature of BERT is that it uses a unified architecture 

across different tasks.  

There are two steps in the BERT framework: pre-training and fine-tuning (Figure 

5). For pre-training, the model is trained on unlabeled data over different pre-training 

tasks. For fine-tuning, BERT is firstly initialized by the pre-trained parameters and then 

all the parameters are fine-tuned using labeled data from the downstream tasks of 

interest.   

 

Figure 5: Overall pre-training and fine-tuning for BERT (Devlin et al., 2018) 

 

3. Applications in Sentiment Analysis  

In the past decade, the deep learning evolution has made many breakthroughs in 

the NLP field and achieved state-of-the-art performances in key NLP tasks. As an 

important and active research topic in the NLP field, we see a burgeoning research work 

that leverages deep learning methods to investigate sentiment classification. In this 

section, we provide a survey of deep learning applications in sentiment analysis.  
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Sentiment analysis has a number of subareas, each of which addresses a different 

level of research. In this section, we firstly categorize the literature into three groups by 

the granularity of sentiment analysis tasks; secondly, within each task, we further 

organize the literature based on the deep learning architecture used.  

3.1 Classic Deep Learning Architectures for Sentiment Analysis  

Sentiment analysis can be grouped into three categories based on the levels of 

granularity of sentiment: sentence-level, document-level, and aspect-level (Liu, 2015).  

3.1.1 Sentence-level Sentiment Analysis  

Existing literature typically frame the sentence-level sentiment as a three-way 

classification problem: positive, negative, and neutral. Below, we organize the 

sentence-level sentiment analysis according to the deep learning architecture adopted.  

Autoencoder and RNN 

Socher and coauthors conduct a series of research on sentiment analysis using 

autoencoders and various forms of the RNN architecture. Socher et al. (2011) introduce 

a recursive autoencoder model to predict the sentence-level sentiment label distribution 

(Figure 6). This model learns a semantic vector space representation of phrases, which 

can capture more complex linguistic phenomena compared to the bag-of-words method. 

In this model, they firstly map the word indices into a semantic vector space; then, use 

an autoencoder network to recursively merge the semantic vectors into a fixed length 

sentence representation; and finally use the vectors at every node as features in order to 

predict the distribution over sentiment labels.  
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Figure 6: Recursive Autoencoder architecture for predicting sentence-level 

sentiment distribution (Socher et al., 2011) 

To capture the compositional meaning of phrases, Socher et al. (2012) propose a 

matrix-vector RNN (MV-RNN) model to learn compositional vector representations for 

both phrases and sentences of arbitrary length. To do so, MV-RNN assigns a vector as 

well as a matrix to each node in a parse tree: the vector is used to capture the inherent 

meaning of the constituent, and the matrix aims to capture its impacts on neighboring 

words and phrases (Figure 7).   
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Figure 7: A recursive neural network that learns semantic vector representation of 

phrases (Socher et al., 2012) 

Following this, Socher et al. (2013) introduce the Recursive Neural Tensor 

Network (RNTN) and achieve the state-of-the-art result in single sentence sentiment 

classification (negative/positive) with accuracy of 85.4%. Moreover, RNTN is able to 

capture the effects of negation and its scope for phrases. RNTN is based on the previous 

MV-RNN model, whose main idea is representing words and phrases in a parse tree as 

a combination of a vector and a matrix (Socher et al., 2012), and improves it by using 

the same and tensor-based composition function for all nodes.  
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Figure 8: Approach of Recursive Neural Network models for sentiment (Socher 

et al., 2013) 

LSTM 

To better capture the interactions between words in the compositional process, 

Wang et al. (2015) use the Long Short-Term Memory (LSTM) to analyze the twitter 

sentiment. The intuition is that the structure of the LSTM unit has the potential to 

provide more flexibility to simulate the compositional results compared to the vanilla 

RNN.  

A bidirectional LSTM (bi-LSTM) structure is applied to address both the semantic 

compositionality and word sense variations issues by Teng et al. (2016). As shown in 

Figure 9, the sentiment score of a sentence is calculated as a weighted sum of sentiment 

words scores and a sentence-level bias score: sentiment words scores are obtained from 

sentiment lexicons, and weights are context-sensitive. In this way, this structure has the 

potential to capture context-dependent semantic composition effects on sentence-level.  
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Figure 9: The bi-LSTM model structure for sentence-level sentiment score (Teng 

et al., 2016) 

As the syntactic properties of natural language combines words to phrases, Tai et 

al. (2015) generalize LSTMs to tree-structured network topologies to improve the 

semantic representations of sentences. The so-called Tree-LSTM model outperformed 

other existing systems on sentiment classification then. Specifically, the Tree-LSTM 

extended the standard LSTM by using a tree topology to incorporate information from 

multiple child units (Figure 10).  PB
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Figure 10: Composing the memory cell and hidden state of a Tree-LSTM unit 

with two children (Tai et al., 2015) 

CNN 

While CNN is originally invented for computer vision problems (LeCun et al., 

1998), prior work shows that this architecture can also be effective for NLP tasks. 

Besides the rich literature using RNN structures for sentiment tasks described above, 

the CNN architecture has also been adopted to tackle the sentiment classification 

problem. Kim (2014) applies a simple CNN model on pre-trained word vectors to 

sentence-level sentiment extraction and achieved excellent results on several 

benchmarks (Figure 11). The word vectors are from Mikolov et al. (2013), which is 

trained by an unsupervised neural language model. The excellent results on sentence 

classification benchmarks indicates that the pre-trained word vectors can be viewed as 

‘universal’ feature extrators that can be then used for multiple NLP tasks besides 
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sentiment analysis.  

 
Figure 11: CNN model architecture with two channels for sentence sentiment 

analysis (Kim, 2014) 

Following Kim (2014) using CNN in sentiment analysis, Poria et al. (2015) make 

an improvement by using the activation values of the hidden layers as features for a 

more advanced classifier and further pushed the sentiment analysis accuracy.  

In the same year, Kalchbrenner et al. (2014) introduce Dynamic Convolutional 

Neural Network (DCNN), a variant of the standard CNN, for the semantic modeling of 

sentences. The key feature of DCNN is using dynamic k-max pooling, which is a 

generalization of max pooling, over linear sequences. In Figure 12, the dynamic k-max 

pooling layers have values k of 5 and 3.  
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Figure 12: The DCNN architecture for input sentence (Kalchbrenner et al., 2014) 

Hybrid or Ensemble Models 

Earlier literature, as described above, typically adapts one of the main deep neural 

networks for sentiment analysis, either RNN(LSTM) or CNN. In recent years, 

researchers has also investigated various hybrid models with the aim of getting the 

benefits from both worlds. Among these, Wang et al. (2016) propose a regional CNN-

LSTM model to provide fine-grained valence-arousal (VA) ratings of texts (Figure 13). 
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The regional CNN takes a single sentence as a region and therefore divides an entire 

text into several regions. This helps to extract useful information from each sentences 

and weight them based on their contribution to the prediction. The LSTM then 

sequentially integrates the output of CNN for VA prediction.  

 

Figure 13: Architecture of regional CNN-LSTM model (Wang et al., 2016) 

Guggilla et al. (2016) also describe a system that combined CNN and LSTM for 

processing arguments in online user interactive discourse (Figure 14).  

PB
CS
F



 
  
 

21 
 

 

Figure 14: Illustration of two methods for claim classification (Guggilla et al., 

2016) 

Combining both deep learning techniques and the classical feature-based models, 

Akhtar et al. (2017) propose a multilayer perceptron (MLP)-based ensemble 

architecture for financial sentiment analysis. As the first step, they develop CNN, 

LSTM, and Gated Recurrent Unit (GRU) models, which are “trained on top of pre-

trained, autoencoder-based, financial word embeddings and lexicon features”. Then, 

these models are combined with support vector regression to form an ensemble model 

(Figure 15). This model achieves impressive results on SemEval-2017 shared task on 

financial sentiment analysis.  
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Figure 15: MLP based ensemble architecture (Akhtar et al., 2017) 

3.1.2 Document-level Sentiment Analysis 

Document-level sentiment refers to the assignment of an overall sentiment 

orientation or polarity to an entire document. Usually, it is framed as a binary 

classification or a regression problem (the number of classes varies). It is assumed to 

be more challenging than the sentence-level sentiment classification, as we have to 

capture the complex relationships between sentences in a document.  

Obviously, it is critical to firstly develop a good documentation representation, 

which lays out the foundation to extract the information contained in the document’s 

words and sentences. After this critical step, we can then feed the representation into 

the deep learning architectures to calculate the document-level sentiment. There is a 

rich literature that focus on developing a proper document representation.  

The conventional bag-of-words representation is a common fixed-length feature, 

but it fails to take the ordering and semantics of words into account. To overcome these 

weaknesses, Le and Mikolov (2014) propose an unsupervised algorithm Paragraph 
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Vector to learn a fixed-length feature representation of texts. This algorithm can 

represent a document by a dense vector that addresses the disadvantages of bag-of-

words. They apply Paragraph Vector to several benchmark sentiment analysis datasets 

and the experiment results outperformed that of bag-of-words.  

An interesting work in this line investigates the domain adaptation for sentiment 

classifiers (Glorot et al., 2011). While the online reviews and recommendations are 

increasing exponentially, such digital text typically belongs to different domains and it 

is challenging to get annotated data for each of them. To address this problem, Glorot 

et al. (2011) extract a high-level feature representation for every review via a deep 

learning approach, which allows it to perform the domain adaption on a large dataset 

composed of 22 domains.  

Tang et al. (2015a) introduce an ensemble neural network to learn vector-based 

document representation in two steps (Figure 16). They first use CNN or LSTM to learn 

sentence representation. Built up on this, this paper then utilizes the gated recurrent 

neural network to produce a document representation by adaptively encoding semantics 

of sentences as well as their relationships.  
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Figure 16: Model for document-level sentiment classification (Tang et al., 2015a) 

In a related work, Tang et al. (2015b) incorporate the information on users who 

expresse the sentiment as well as the evaluated products into the document sentiment 

analysis (Figure 17). To do so, this paper uses vector space models to take such 

information into account, which contributes to developing a better document 

representation.   

 

Figure 17: Neural network architecture for sentiment classification (Tang et al., 

2015b) 

3.1.3 Aspect-level Sentiment Analysis 
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In contrast to the sentence-level and the document-level sentiment classification 

described above, the aspect-level sentiment analysis aims to find and aggregate the 

sentiment on entities mentioned in either sentences or documents (Schouten and 

Frasincar, 2015). In this regard, the aspect-level sentiment is more challenging. It has 

to firstly identify the opinion targets (an entity or entity aspect), which is called the 

aspect detection or the aspect extraction, and then measure the corresponding sentiment. 

Furthermore, it is difficult to model the relationship between the target and its 

contextual words in the sentence or document, which also makes the aspect-level 

sentiment research difficult. As we’ll see in the next session, recent works exploit the 

attention mechanism to tackle such challenges.  

To begin with, we review recent works that exploit deep learning approaches for 

the first-step subtask in the aspect sentiment analysis: the aspect extraction. Katiyar and 

Cardie (2016) applies deep bidirectional LSTMs to extract both opinion entities and 

two kinds of relationships (IS-FROM and IS-ABOUT) among them. While standard 

LSTMs are not competitive, they find that introducing sentence-level and relation-level 

optimization enables the LSTM to achieve SOTA performance.  

Different from the work using RNN, Poria et al., (2016) resort to the CNN 

architecture and propose to use a 7-layer deep convolutional neural network to tag each 

work as either aspect or non-aspect in a sentence. To further improve the accuracy, they 

incorporate a set of linguistic patterns developed for aspect extraction into the CNN 

architecture, which yield an ensemble classifier.  
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After the aspect extraction, we now turn to the second subtask in the aspect 

sentiment analysis, which focuses on measuring the sentiment for entities in the 

opinionated-text. In this subfield, we see an increasing application of aspect sentiment 

in customer reviews. A recent paper by Ruder et al. (2016) argues that “knowledge of 

the review structure and sentential context should inform the classification of each 

sentence”. In light of this, the authors use a hierarchical bidirectional LSTM to model 

the interdependencies of sentences in a review for aspect sentiment task (Figure 18), 

which outperform non-hierarchical baselines.  

 

Figure 18: The hierarchical bidirectional LSTM for aspect sentiment analysis 

(Ruder et al., 2016) 

3.2 Applying Attention Mechanism, Transformer and BERT for Sentiment 
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Analysis 

In this section, we review the representative literature that utilizes the attention 

mechanism, Transformer, or BERT for Sentiment analysis. In line with the earlier 

section, we further group the research based on the sentiment granularity.   

Document-level sentiment analysis 

Yang et al. (2016) propose a hierarchical attention network for document 

classification. There are two distinctive features of this model (Figure 19). The first 

method is to use the hierarchical structures to model the hierarchical structure of the 

document; the second is to combine both word-level attention and sentence-level 

attention to pay more or less attention to words and sentences. This model outperforms 

previous methods on six benchmark datasets.  
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Figure 19: Hierarchical attention network (Yang et al., 2016) 

As labeled resources are typically very imbalanced across languages, cross-lingual 

sentiment classification aims to address this challenge by adapting sentiment resources 

in a resource-rich language to a resource-poor language. To this end, Zhou et al., (2016) 

present an attention-based bilingual representation learning model to learn the 

distributed semantics of the documents in the source and target languages. In addition, 

they propose a hierarchical attention mechanism for the bilingual LSTM (Figure 20), 
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which achieves good results on a benchmark dataset.  

 

Figure 20: Attention-based LSTM architecture (Zhou et al., 2016) 

Domain adaptation is a common challenge in many machine learning tasks. While 

standard deep learning models can learn a representation shared by different domains, 

limited interpretability prevents them from identifying pivots. To solve this problem, 
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Li et al. (2017) propose an end-to-end Adversarial Memory Network (AMN) for cross-

domain sentiment analysis. This framework is composed of two parameter-shared 

memory networks for sentiment classification and domain classification respectively, 

which are trained jointly (Figure 21). AMN has SOTA performance on the Amazon 

review dataset.  

 

Figure 21: The Adversarial Memory Network architecture (Zhang et al., 2017) 

Yin et al. (2017) focus on document-level multi-aspect sentiment classification 

and modele the task as a machine comprehension problem. They introduce a 

hierarchical iterative attention model to learn aspect-specific representations through 

repeated interactions between documents and aspect questions (Figure 22). The 

hierarchical architecture is designed to capture both word-level and sentence-level 

information. And the attention modules are applied to “aspect questions and document 
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alternatively with the multiple hop mechanism”.  

 

Figure 22: Model architecture (Yin et al., 2017) 

Aspect-level sentiment 

Chen et al. (2017) propose a similar hierarchical LSTM model to generate sentence 

and document representations, and then incorporate user and product information via 

the attention mechanism. The over architecture is displayed in the figure below.   

 

Figure 23: User product attention based neural sentiment classification (Chen et 

al., 2017) 

Observing that the sentence-level polarity depends on both the content and the 

corresponding concerned aspect, Wang et al. (2016) investigate the connection between 
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an aspect and the content of a sentence. To do so, they propose an attention-based 

LSTM architecture for aspect-level sentiment classification. In particular, for different 

aspects in the input, the attention mechanism enables the model to focus on 

corresponding parts.  

 

Figure 24: The architecture of attention-based LSTM 

With the goal of identifying coherent aspects, He et al. (2017) use neural word 

embeddings to capture the distribution of word co-occurrences. In particular, they apply 

the attention mechanism in the training process to de-emphasize irrelevant words.  PB
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Figure 25: Model architecture (Chen et al., 2017) 

As BERT has achieved breakthroughs in multiple NLP tasks, it is straightforward 

to exploit this powerful language representation model to tackle the challenging aspect 

sentiment classification. For instance, to use the pre-trained BERT for this subtask, Sun 

et al. (2019) construct an auxiliary sentence form the aspect and framed the aspect 

sentiment as a sentence-pair classification problem. The fine-tuned BERT has SOTA 

results on benchmark datasets.  

4. Summary and Future Work  

In this study, we focus on the applications of deep learning methods for sentiment 

analysis. We begin with an overview of the sentiment classification, which has been an 

ongoing and important research topic in the natural language processing field. The 

second section reviews the deep learning architectures with a special focus on recent 

breakthroughs. With this background, we then dive into representative literature that 

investigate deep learning approaches for three sentiment analysis tasks: the sentence-
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level, the document-level, and the aspect-level.  

We end this study by discussing some of the remaining challenges and pointing 

out some promising future directions. First of all, it is critical to standardize benchmark 

datasets and develop better performance measurements. Without this, it is difficult to 

effectively evaluate and compare the performance of various models and push the 

SOTA results. Second, developing automated sentiment analysis system is crucial to 

explore the exponentially increasing digital text effectively and efficiently. Last but not 

least, many high-stake fields, such as finance and medical care, require interpretability 

of the sentiment analysis model. However, the black-box nature of deep learning 

methods significantly limits its applications in such domains. Going forward, 

developing interpretable models will help release the power of machine learning 

methods in high-stake scenarios.     
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