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1. Overview of Sentiment Analysis

Sentiment analysis has been an ongoing and important research topic in the natural
language processing field. It aims to determine the judgement of a writer with respect
to a certain topic based on a given text, typically a single sentencesr an entire document
(Glorotetal., 2011). There are a number of diffetent names for this task, such as opinion
extraction, opinion mining, sentiment mining, and'subjectivity analysis.

As sentiment analysis is closely related to decision=making and predictions, it has
found numerous application$ tn a wide spamof domains, from buying products online
from Amazon or Alibabato, making multi-million investment decisions in emerging
technology, from predieting US presidential election to extracting investor views from
stock reviews. From a high-level perspective, the capability to extract opinions from
the flooding digital text enables sentiment analysis to shape the business landscape
remarkably and to exert influence on the society profoundly.

In the computer science literature, sentiment analysis is typically framed as a
classification or regression problem. Historically, machine learning researchers have
adopted a variety of algorithms, both supervised and unsupervised, to tackle the

sentiment analysis task, but only achieved limited success. For instance, earlier research
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investigates multiple classic machine learning algorithms for sentiment classification,
such as naive bayes, support vector machine, and maximum entropy. However, these
early approaches are not competent enough to extract fine-grained sentiment from the
given text.

Over the past decade, the deep learning evolution has brought many ground-
breaking progresses in various subfields from computer vision to natural language
processing. In line with this trend, the machine learning .community has adopted a
variety of deep learning techniques for sentiment analysis and therefore improved the
performance on benchmark datasets substantially.

In addition to the methodological breakthroughs primarily driven by deep learning,
the exponentially increasing online data across domains further stimulates the interest
in sentiment mining. In particular, the rise'of soeial media on the Web such as social
networks, micro-blogs, ratings and reviews contributes to the accumulation of a huge
opinionated digital data, Indeed, the society as a whole has produced an ocean of online
text on an unprecedented ‘seale in human history. Now, the challenge is how to
efficiently and effectively explore this ocean of data. “We are drowning in information
and starving for knowledge”, as Rutherford Roger put it. In light of this, sentiment
mining is part of the effort toward this goal of extracting knowledge from the vast text
ocean.

In a nutshell, the advancements in machine learning techniques and the exploding

online data together make sentiment analysis a hot and crucial topic in both academic
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research and industrial practices. On the one hand, we see a surge of research in
sentiment classification in the past decade. On the other, we also witness a rapidly
growing applications of sentiment analysis methods by corporations, start-ups as well
as government agencies. For instance, there are start-ups focusing on providing
sentiment analysis of unstructured data. Moreover, global companies are establishing
in-house apartments to build such capacity.

This study seeks to provide a survey of recent applications of deep learning
approaches in sentiment analysis. In doing so, we begin by reviewing the relevant
background including word embeddings anddmportant deep learning architectures.
Equipped with these, we then survey_tepresentative work on applying these deep
learning techniques for sentiment classification. With‘a'comprehensive picture in mind,
we summarize certain remaining challenges,in _séntiment analysis and discuss future

research directions.

2. Word Embedding and Deep Learning Architectures
2.1 Word Embedding

The arguably most important common denominator of NLP tasks is figuring out
how to represent words as the input to any language models. Words are typically
represented as vectors that can effectively capture the similarities, differences as well
as relationships between them.

Among various ways to do word embedding, the simplest one to encode words
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into numeric vectors is one-hot vector, which represent every word as a V-dimensional
vector with all Os but one 1 at the index of the word of that language. V is the size of
the vocabulary. While simple, the disadvantages of one-hot vector are obvious: the
vector is very high-dimensional and sparse; moreover, modeling each word as an
independent vector fails to directly capture any similarities and all semantic connections
among words. These motivate researchers to investigate into alternative ways, which

gives rise to different classes of word embedding methods, as we will see below.

SVD Based Word Embedding

For SVD-based word embedding, the first step is to loop over a large dataset to
count the co-occurrence of words. Such counts thén form a matrix. Two specific choices
for this matrix are the word-document matrix and the'window-based co-occurrence
matrix. Secondly, we perforfn SVD on the'matrix and get USVT. Then the rows of U
will be used as the wotd embeddings. In practice, we typically select a submatrix of U
based on desired percentagé variance, which gives a representation of all words in the
corpus. Of course, this class ef methods is not perfect and has its own problems. The
matrix is very sparse and high-dimensional, which requires quadratic time to calculate,
and changes every time we introduce new words into the corpus, just to name a few.

Iteration Based Word Embedding

Iteration-based methods address some of the problems mentioned above. The main
idea is to use the classic backpropagating method. We build a model whose parameters

are the word vectors, and design an appropriate objective to train the model. During the
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training process, we update the parameters per iteration. In other words, we capture the
word co-occurrence one at a time instead of capturing all of them at the same time like
the SVD method. In this category of word embeddings, popular methods include
word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014).

Sentiment-Oriented Word Embedding Through Neural Network

In addition, we can use neural network to learn sentiment-oriented word
embedding. To capture both semantic and sentiment information, Maas et al. (2011)
mix an unsupervised probabilistic model and a supervised sentiment component to learn
word vectors with “semantic term-documentginformation as well as rich sentiment
content.” Alternatively, Labutov and Lipsen (2013) proposeito build up on an existing
word embedding and re-purpose it to improve sentiment elassification performance. To
do so, they take the word emibedding and label data as input and learn a re-embedding
vectors that achieves better improvement on sentiment analysis.

2.2 Attention Mechanismg Transformer and BERT for Sentiment

We refer the readers to-@Deep Learning textbook for a review of the classic deep
learning architectures including Multi-Layer Perceptron (MLP), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), and Long-Short Term Memory
(LSTM)®. Due to limited space, we choose to focus on the recent breakthroughs in
deep learning architectures, which has far-reaching influence on sentiment analysis and

the NLP field at large.

“ LSTM is one kind of RNNs.
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2.2.1 Attention Mechanism

The research on attention has a long history in cognitive neuroscience. Take human
vision for example, we do not process all sensory input at any time; instead, attention
allows us to prioritize and focus on a small fraction of the input that is most relevant.
There are various types of attention in cognitive neuroscience, selective attention,
covert attention, and spatial attention (Zhang et al, 2020). These findings inspire the
deep learning community to introduce similar attention idea into the neural networks.

In NLP, attention is firstly introduced to tackle th¢ informatien bottleneck problem
of the Seq2Seq model (Bahdanau et al., 2015)¢ Specifically, the attention mechanism
provides direct connections between the.decodeér and encoder (instead of only the
encoder output) and enables the decoder to focus on‘a particular part of the source
sequence. While attention is‘initially used in,thesSeq2Seq model, it actually has very
wide applications beyond this particular architecture. Indeed, the attention mechanism
is a general deep learning technique.

We now focus on how'te transform the attention into mathematical models. In a
general setting, we have a query as input and a set of values in the memory, attention is
used to compute a weighed sum of the values, which depends on the query (Figure 1).
Let us begin with one attention layer and breakdown the attention calculation process
into three steps. First, we calculate an attention score via a score function. Then, we
take a softmax of the attention scores, which gives an attention distribution. Finally, we

use the attention distribution to compute a weighted sum of the values, which is the
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In the first step, it is worthy to note that there are different choices of the score
function, which leading to different attention layers accordingly. A simple and popular
one is dot-product attention. Alternative score functions include the multiplicative
attention and the additive attention.

Memory

Values Output

JF Y t

Attention

Keys Query

Figure 1: Illustrationf attention mechanism (Zhang et al., 2020)

2.2.2 Transformer

A primal motivation for the Transformer is to tackle the fundamental constraint of
sequential computation in existing recurrent models. In recent years, the attention
mechanism has been incorporated into the conventional recurrent network to draw
global dependencies of input and output. Such combined architectures have achieved
state-of-the-art performance in multiple NLP tasks. While the attention mechanisms
have become an integral part of both sequence modeling and transduction models, the
sequential nature of the recurrent network still precludes the parallelization of the model

training procedure. This constraint motivates the researchers to search for an
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Transformer is the first network architecture that is solely based on attention
mechanisms (Vaswani et al., 2017). It generalizes well to various NLP tasks and
achieves superior results, while significantly reduces the training time compared to
existing RNN-based architectures. In general, the Transformer has an encoder-decoder
structure, as shown in Figure 2. In particular, it uses stacked self-attention and point-

wise, fully connected layers for both the encoder and decoder.
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Figure 2: The model architecture of the Transformer (Vaswani et al., 2017)
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We now dive into the self-attention block in the Transformer. The input consists of
queries, keys, and values. The attention is calculated as a weighted sum of the values,
while the weights is the dot product of queries and keys scaled by the square root of the

dimension of the keys (Figure 3).

Scaled Dot-Product Attention

Mathul

Figure 3: Scaled dot-product attention (Vaswani et al., 2017)

In practice, the queries, keys, and values are firstly projected into a lower
dimension h times. Themwe conduct the scaled dot-product attention on each of these
projected versions and concatenate the results. In this way, we get the so-called multi-
head attention. The underlying intuition is that the “multi-head attention allows the
model to jointly attend to information from different representation subspaces at

different positions” (Vaswani et al., 2017).
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Figure 4: Multi-head attention (Vaswani etal., 2017)
2.2.3 BERT: Pretraining and Fine Tuning

Based on the Transformer, Deylin et al. (2018) introduce a new language
representation model called Bidirectional Encoder Representations from Transformers
(BERT), which is designedyto “pretrain deep bidirectional representations from
unlabeled text by jeintly conditioning ontboth left and right context in all layers”. This
pre-trained model can then be fine-tuned with one additional output layer to yield SOTA
performance on downstream tasks including sentiment analysis.

The overall architecture of BERT is a multi-layer bidirectional Transformer
encoder. This model architecture allows BERT to make crucial improvements over
existing techniques. Recognizing that a key constraint of standard language models is
their unidirectionality, BERT alleviates this limitation by using masked language
models to enable pre-trained deep bidirectional representations. The pre-trained
representations of BERT greatly reduce the need for heavily-engineered task-specific

10
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architecture. In fact, a distinguished feature of BERT is that it uses a unified architecture
across different tasks.

There are two steps in the BERT framework: pre-training and fine-tuning (Figure
5). For pre-training, the model is trained on unlabeled data over different pre-training
tasks. For fine-tuning, BERT is firstly initialized by the pre-trained parameters and then
all the parameters are fine-tuned using labeled data from the downstream tasks of

interest.

ﬂSP Ma‘s: LM Mas‘k.LM \ /ﬁul/g@ StarEnd Spa_r;\

T 11 11 1T i) 1T
=E- EIE=E- 6 =50 EI=E- 6
Masked Sentence A * Masked Sentence B Question '_ Paragraph
\ Unlabeled Sentence A and B\Pair / \ Question Answer Pair

Pre-training Fine-Tuning

Figure 5: Overall peé-training and fine-tuning for BERT (Devlin et al., 2018)

3. Applications in Sentiment Analysis

In the past decade, the deep learning evolution has made many breakthroughs in
the NLP field and achieved state-of-the-art performances in key NLP tasks. As an
important and active research topic in the NLP field, we see a burgeoning research work
that leverages deep learning methods to investigate sentiment classification. In this

section, we provide a survey of deep learning applications in sentiment analysis.

11
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Sentiment analysis has a number of subareas, each of which addresses a different
level of research. In this section, we firstly categorize the literature into three groups by
the granularity of sentiment analysis tasks; secondly, within each task, we further
organize the literature based on the deep learning architecture used.
3.1 Classic Deep Learning Architectures for Sentiment Analysis

Sentiment analysis can be grouped into three categories based on the levels of
granularity of sentiment: sentence-level, document-level, and aspect-level (Liu, 2015).
3.1.1 Sentence-level Sentiment Analysis

Existing literature typically frame the sehntence-level sentiment as a three-way
classification problem: positive, negative, andineutral.. Below, we organize the
sentence-level sentiment analysis according to the deepilearning architecture adopted.

Autoencoder and RNN.

Socher and coauthorsiconduct a series of research on sentiment analysis using
autoencoders and various forms of the RNN architecture. Socher et al. (2011) introduce
a recursive autoencoder model to predict the sentence-level sentiment label distribution
(Figure 6). This model learns a semantic vector space representation of phrases, which
can capture more complex linguistic phenomena compared to the bag-of-words method.
In this model, they firstly map the word indices into a semantic vector space; then, use
an autoencoder network to recursively merge the semantic vectors into a fixed length
sentence representation; and finally use the vectors at every node as features in order to

predict the distribution over sentiment labels.

12
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i  walked into a parked car  Words

Figure 6: Recursive Autoencoder architecture for predicting sentence-level
sentiment distributien, (Socher et al., 2011)

To capture the compositional meaning of phrases, Socher et al. (2012) propose a
matrix-vector RNN (MV-RNN) model to learn.compositional vector representations for
both phrases and senténces of arbitrary length. To do so, MV-RNN assigns a vector as
well as a matrix to each node in a parse tree: the vector is used to capture the inherent
meaning of the constituent,"and the matrix aims to capture its impacts on neighboring

words and phrases (Figure 7).

13
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Figure 7: A recursive neural network that learns semantic/ector representation of
phrases (Socher gt al., 2012)

Following this, Socher et al. (2013)" introduce the/ Recursive Neural Tensor
Network (RNTN) and achieve the state-of-the-art result in single sentence sentiment
classification (negative/positive) withfaceuracy of 85.4%. Moreover, RNTN is able to
capture the effects of negation.and its,scope for phrases. RNTN is based on the previous
MV-RNN model, whose main idea is representing words and phrases in a parse tree as
a combination of a vector and a matrix (Socher et al., 2012), and improves it by using

the same and tensor-based composition function for all nodes.

14
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Figure 8: Approach of Recursive Neural Networkdmodels for sentiment (Socher
et al., 2013)

LSTM

To better capture the interactions between words inthe compositional process,
Wang et al. (2015) use the Long Short-Term Memory (LSTM) to analyze the twitter
sentiment. The intuition.is that, the structure of the LSTM unit has the potential to
provide more flexibility to simulate thé compositional results compared to the vanilla
RNN.

A bidirectional LSTM (bi-LSTM) structure is applied to address both the semantic
compositionality and word sense variations issues by Teng et al. (2016). As shown in
Figure 9, the sentiment score of a sentence is calculated as a weighted sum of sentiment
words scores and a sentence-level bias score: sentiment words scores are obtained from
sentiment lexicons, and weights are context-sensitive. In this way, this structure has the

potential to capture context-dependent semantic composition effects on sentence-level.
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Figure 9: The bi-LSTM model structure for sent -level sentiment score (Teng
et al., 2016)

As the syntactic properties of na guage combines words to phrases, Tai et

al. (2015) generalize LSTMs twork topologies to improve the

N

extended the standard [

ed Tree-LSTM model outperformed

ication then. Specifically, the Tree-LSTM
by using a tree topology to incorporate information from

multiple child units (Figure 10).
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Figure 10: Composing the memory celland hidden state of a Tree-LSTM unit
with two childeen (Tar€tal., 2015)

CNN

While CNN is originally invented fotyeomputer vision problems (LeCun et al.,
1998), prior work shows that this architecture can also be effective for NLP tasks.
Besides the rich literature aising RNN structures for sentiment tasks described above,
the CNN architecture has also been adopted to tackle the sentiment classification
problem. Kim (2014) applies a simple CNN model on pre-trained word vectors to
sentence-level sentiment extraction and achieved excellent results on several
benchmarks (Figure 11). The word vectors are from Mikolov et al. (2013), which is
trained by an unsupervised neural language model. The excellent results on sentence
classification benchmarks indicates that the pre-trained word vectors can be viewed as

‘universal’ feature extrators that can be then used for multiple NLP tasks besides

17
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sentiment analysis.
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Figure 11: CNN model architecture with two ¢hannels forsentence sentiment
analysis (Kimg2014)

Following Kim (2014) using CNN in.sentimént analysis, Poria et al. (2015) make
an improvement by using the activation values of the'hidden layers as features for a
more advanced classifier and further pushedithe séntiment analysis accuracy.

In the same year; Kalehbrenner et al. (2014) introduce Dynamic Convolutional
Neural Network (DCNN), a'variant of the standard CNN, for the semantic modeling of
sentences. The key feature'of DCNN is using dynamic k-max pooling, which is a
generalization of max pooling, over linear sequences. In Figure 12, the dynamic k-max

pooling layers have values k of 5 and 3.
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The cat sat on the red mat

Figure 12: The DCNN architecture for input sentence (Kalchbrenner et al., 2014)

Hybrid or Ensemble Models

Earlier literature, as described above, typically adapts one of the main deep neural
networks for sentiment analysis, either RNN(LSTM) or CNN. In recent years,
researchers has also investigated various hybrid models with the aim of getting the
benefits from both worlds. Among these, Wang et al. (2016) propose a regional CNN-

LSTM model to provide fine-grained valence-arousal (VA) ratings of texts (Figure 13).

19
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The regional CNN takes a single sentence as a region and therefore divides an entire
text into several regions. This helps to extract useful information from each sentences
and weight them based on their contribution to the prediction. The LSTM then

sequentially integrates the output of CNN for VA prediction.
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. \
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Figure 13: Architecture of regional CNN-LSTM model (Wang et al., 2016)
Guggilla et al. (2016) also describe a system that combined CNN and LSTM for

processing arguments in online user interactive discourse (Figure 14).
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)

Combining both deep learning techniques and t ssical feature-based models,

Akhtar et al. (2017) prg rceptron (MLP)-based ensemble
architecture for fina is. As the first step, they develop CNN,
LSTM, and Gated i RU) models, which are “trained on top of pre-
trained, autoencoder-based, financial word embeddings and lexicon features”. Then,
these models are combined with support vector regression to form an ensemble model

(Figure 15). This model achieves impressive results on SemEval-2017 shared task on

financial sentiment analysis.
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Figure 15: MLP based ensemble architecture (Akhtar et al., 2017)
3.1.2  Document-level Sentiment Analysis

Document-level sentiment refers to thefassignment of an overall sentiment
orientation or polarity to an entire doewmentiiUsually, it is framed as a binary
classification or a regression problem (the number of'classes varies). It is assumed to
be more challenging than the sentence-level seatiment classification, as we have to
capture the complex rélationships between sentences in a document.

Obviously, it is"eritical to firstly develop a good documentation representation,
which lays out the foundation, to extract the information contained in the document’s
words and sentences. After this critical step, we can then feed the representation into
the deep learning architectures to calculate the document-level sentiment. There is a
rich literature that focus on developing a proper document representation.

The conventional bag-of-words representation is a common fixed-length feature,
but it fails to take the ordering and semantics of words into account. To overcome these

weaknesses, Le and Mikolov (2014) propose an unsupervised algorithm Paragraph

22
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Vector to learn a fixed-length feature representation of texts. This algorithm can
represent a document by a dense vector that addresses the disadvantages of bag-of-
words. They apply Paragraph Vector to several benchmark sentiment analysis datasets
and the experiment results outperformed that of bag-of-words.

An interesting work in this line investigates the domain adaptation for sentiment
classifiers (Glorot et al., 2011). While the online reviews and recommendations are
increasing exponentially, such digital text typically belongs,to different domains and it
is challenging to get annotated data for each of themgTo address,this problem, Glorot
et al. (2011) extract a high-level feature representation for every review via a deep
learning approach, which allows it to pesform the'domain‘adaption on a large dataset
composed of 22 domains.

Tang et al. (2015a) intfoduce an ensemble meural network to learn vector-based
document representation intwo steps (Figure 16). They first use CNN or LSTM to learn
sentence representation. Built up on this, this paper then utilizes the gated recurrent
neural network to produce a'decument representation by adaptively encoding semantics

of sentences as well as their relationships.
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Figure 17: Neural network architecture for sentiment classification (Tang et al.,

2015b)

3.1.3 Aspect-level Sentiment Analysis
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In contrast to the sentence-level and the document-level sentiment classification
described above, the aspect-level sentiment analysis aims to find and aggregate the
sentiment on entities mentioned in either sentences or documents (Schouten and
Frasincar, 2015). In this regard, the aspect-level sentiment is more challenging. It has
to firstly identify the opinion targets (an entity or entity aspect), which is called the
aspect detection or the aspect extraction, and then measure the corresponding sentiment.
Furthermore, it i1s difficult to model the relationship between the target and its
contextual words in the sentence or document, which also makes the aspect-level
sentiment research difficult. As we’ll see in thé next session, recent works exploit the
attention mechanism to tackle such challeages.

To begin with, we review recent works that exploit'deep learning approaches for
the first-step subtask in the aspect sentimentianalysis: the aspect extraction. Katiyar and
Cardie (2016) appliestdeeprbidirectional LSTMs to extract both opinion entities and
two kinds of relationships(IS-FROM and IS-ABOUT) among them. While standard
LSTMs are not competitive, they find that introducing sentence-level and relation-level
optimization enables the LSTM to achieve SOTA performance.

Different from the work using RNN, Poria et al., (2016) resort to the CNN
architecture and propose to use a 7-layer deep convolutional neural network to tag each
work as either aspect or non-aspect in a sentence. To further improve the accuracy, they
incorporate a set of linguistic patterns developed for aspect extraction into the CNN

architecture, which yield an ensemble classifier.
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After the aspect extraction, we now turn to the second subtask in the aspect
sentiment analysis, which focuses on measuring the sentiment for entities in the
opinionated-text. In this subfield, we see an increasing application of aspect sentiment
in customer reviews. A recent paper by Ruder et al. (2016) argues that “knowledge of
the review structure and sentential context should inform the classification of each
sentence”. In light of this, the authors use a hierarchical bidirectional LSTM to model
the interdependencies of sentences in a review for aspect sentiment task (Figure 18),

which outperform non-hierarchical baselines.
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Figure 18: The hierarchical bidirectional LSTM for aspect sentiment analysis
(Ruder et al., 2016)

3.2 Applying Attention Mechanism, Transformer and BERT for Sentiment
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Analysis

In this section, we review the representative literature that utilizes the attention
mechanism, Transformer, or BERT for Sentiment analysis. In line with the earlier
section, we further group the research based on the sentiment granularity.

Document-level sentiment analysis

Yang et al. (2016) propose a hierarchical attention network for document
classification. There are two distinctive features of this model (Figure 19). The first
method is to use the hierarchical structures to modelfthe hierarghical structure of the
document; the second is to combine both word-level attention and sentence-level
attention to pay more or less attention to.werds and sentences. This model outperforms

previous methods on six benchmark datasets.
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Figure 19: Hierarchical attention network (Yang et al., 2016)

As labeled resources are typically very imbalanced across languages, cross-lingual
sentiment classification aims to address this challenge by adapting sentiment resources
in a resource-rich language to a resource-poor language. To this end, Zhou et al., (2016)
present an attention-based bilingual representation learning model to learn the
distributed semantics of the documents in the source and target languages. In addition,

they propose a hierarchical attention mechanism for the bilingual LSTM (Figure 20),
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which achieves good results on a benchmark dataset.
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Figure 20: Attention-based LSTM architecture (Zhou et al., 2016)
Domain adaptation is a common challenge in many machine learning tasks. While
standard deep learning models can learn a representation shared by different domains,

limited interpretability prevents them from identifying pivots. To solve this problem,
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Liet al. (2017) propose an end-to-end Adversarial Memory Network (AMN) for cross-
domain sentiment analysis. This framework is composed of two parameter-shared
memory networks for sentiment classification and domain classification respectively,
which are trained jointly (Figure 21). AMN has SOTA performance on the Amazon
review dataset.
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Figure 21: The Adversarial' Memory Network architecture (Zhang et al., 2017)
Yin et al. (2017) focus on document-level multi-aspect sentiment classification
and modele the task as a machine comprehension problem. They introduce a
hierarchical iterative attention model to learn aspect-specific representations through
repeated interactions between documents and aspect questions (Figure 22). The
hierarchical architecture is designed to capture both word-level and sentence-level
information. And the attention modules are applied to “aspect questions and document
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alternatively with the multiple hop mechanism”.
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Figure 22: Model architecture (Yinegtal., 2017)

Aspect-level sentiment

Chen et al. (2017) propose a similar hieratchical LSTM medel to generate sentence
and document representations, and theh incorporate user and product information via

the attention mechanism. The oyer architecture is displayed in the figure below.
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Figure 23: User product attention based neural sentiment classification (Chen et
al., 2017)
Observing that the sentence-level polarity depends on both the content and the
corresponding concerned aspect, Wang et al. (2016) investigate the connection between
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an aspect and the content of a sentence. To do so, they propose an attention-based
LSTM architecture for aspect-level sentiment classification. In particular, for different
aspects in the input, the attention mechanism enables the model to focus on

corresponding parts.
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aspects, He et al. (2017) use neural word

embeddings to capture ord co-occurrences. In particular, they apply

the attention mechanism tithe training process to de-emphasize irrelevant words.
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Figure 25: Model architecture ( 17)
As BERT has achieved breakthroughs i i s, it is straightforward

to exploit this powerful language repr le the challenging aspect

4. Summary and Future Work

In this study, we focus on the applications of deep learning methods for sentiment
analysis. We begin with an overview of the sentiment classification, which has been an
ongoing and important research topic in the natural language processing field. The
second section reviews the deep learning architectures with a special focus on recent
breakthroughs. With this background, we then dive into representative literature that
investigate deep learning approaches for three sentiment analysis tasks: the sentence-
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level, the document-level, and the aspect-level.

We end this study by discussing some of the remaining challenges and pointing
out some promising future directions. First of all, it is critical to standardize benchmark
datasets and develop better performance measurements. Without this, it is difficult to
effectively evaluate and compare the performance of various models and push the
SOTA results. Second, developing automated sentiment analysis system is crucial to
explore the exponentially increasing digital text effectively and efficiently. Last but not
least, many high-stake fields, such as finance and medical care, require interpretability
of the sentiment analysis model. However, the black-box nature of deep learning
methods significantly limits its applicationsiifnsuch ‘domains. Going forward,
developing interpretable models will help release “the power of machine learning

methods in high-stake scenafios.
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